We know, Volume = Mass / Density
Here, mass = 4 Kg = 4000 g
d = 1,897 g/ml
Substitute their values,
v = 4000 / 1897
v = 2.108 ml
In short, Your Answer would be 2.108 mL
Hope this helps!
Say we have a cylinder
that has a height of dx, we see that the cylinder has a volume of: <span>
<span>Vcylinder = πr^2*h = π(5)^2(dx) = 25π dx
Then, the weight of oil in this cylinder is:
Fcylinder = 50 * Vcylinder = (50)(25π dx) = 1250π dx.
Then, since the oil x feet from the top of the tank needs to
travel x feet to get the top, we have:
Wcylinder = Force x Distance = (1250π dx)(x) = 1250π x dx.
<span>Integrating from x1 to x2 ft gives the total work to be: (x1
= distance from top liquid level to ground level; x2 = distance from bottom
liquid level to ground level)</span>
<span>W = ∫ 1250π x dx
<span>W = 1250π ∫ x dx
W = 625π * (x2 – x1)</span></span></span></span>
<span>x2 = 14 ft + 15 ft = 29 ft</span>
x1 = 14 ft + 1 ft = 15
ft
<span>
W = 625π * (29^2 - 15^2)
<span>W = 385,000π ft-lbs
= 1,209,513.17 ft-lbs</span></span>
Answer:
Distance, r = 3721.04 meters
Explanation:
It is given that,
Charges on both humans, 
Electric force of attraction between them, F = 650 N
We need to find the separation between two humans. It can be solved using the following formula as :



r = 3721.04 meters
So, the distance between the humans is 3721.04 meters. Hence, this is the required solution.
60 m because that’s the top energy of the roof
To solve this problem it is necessary to address the concepts related to Torque as a function of the force and distance where it is applied and the moment of inertia from which the torque, moment of inertia and angular acceleration are related.
By definition the torque is defined as

Where,

F = Force
r = Radius
For our values we have:



Consequently the calculation of the moment of inertia would then be given by the relationship


Replacing with our values


The moment of inertia of the boxer's forearm 