Answer:
Potential energy = 14.7 Joules.
Explanation:
Given the following data;
Mass, m = 1kg
Height, h = 1.5m
We know that acceleration due to gravity is equal to 9.8m/s²
Potential energy can be defined as an energy possessed by an object or body due to its position.
Mathematically, potential energy is given by the formula;

Where, P.E represents potential energy measured in Joules.
m represents the mass of an object.
g represents acceleration due to gravity measured in meters per seconds square.
h represents the height measured in meters.

Substituting into the equation, we have;

P.E = 14.7 Joules.
Answer: 4.7m/s²
Explanation:
According to newton's first law,
Force = mass × acceleration
Since we are given more the one force, we will take the resultant of the two vectors.
Mass = 2.0kg
F1+F2 = (3i-8j)+(5i+3j)
Adding component wise, we have;
F1+F2 = 3i+5i-8j+3j
F1+F2 = 8i-5j
Resultant of the sum of the forces will be;
R² = (8i)²+(-5j)²
Since i.i = j.j = 1
R² = 8²+5²
R² = 64+25
R² = 89
R = √89
R = 9.4N
Our resultant force = 9.4N
Substituting in the formula
F = ma
9.4 = 2a
a = 9.4/2
a = 4.7m/s²
Therefore, magnitude of the acceleration of the particle is 4.7m/s²
C. The higher the altitude the less gravity affects you
Answer:

Explanation:
Data provided in the question:
Height above the ground, H= 5.0m
Range of the ball, R= 20 m
Initial horizontal velocity =
Initial vertical velocity=
(Since ball was thrown horizontally only)
Acceleration acting horizontally,
= 0 m/s² [ Since no acceleration acts horizontally) ]
Vertical Acceleration,
= 9.8 m/s² (Since only gravity acts on it)
Let 't' be the time taken to reach ground
Therefore, using equations of motion, we have



Then using Equations of motion for horizontal motion,


