Answer:
1a) 857143 m
1b) 414 m
2a)
2b)
3) the medium of air has a wavelength of 0.334 m, the medium of water has a wavelength of 1.493 m, and the medium of 5.130 m.
Explanation:
Question 1a)
Given the velocity/speed, and frequency of the wave, the length can be calculated using these two quantites.
[ λ = v / f ] wavelength = <u>v</u>elocity of the wave / <u>f</u>requency of the wave in Hz.
Since 3 × 10^8 × ms^-1 is the velocity, and 350Hz is the frequency.
Anything to the negative power is reciprocated. i.e ms^-1 = m/s.
The wavelength is 300000000m/350Hz = 857142.8571428..... m ≈ 857143 m
Question 1b) Given that the frequency of the second wave in water is 1% of the first wave, and the speed of the second wave is 1450ms^-1
Therefore the second wave has a frequency of 1% of 3.5 = 350/100 Hz = 3.5 Hz
The wavelength is found using the same
formula: wavelength = 1450m/3.5Hz = 414.2857142857.... m ≈ 414 m
Question 2a)
Question 2b)
Question 3) Remember, the speed of sound of the medium = frequency of the medium × wavelength of the medium.
Therefore the wavelength of the medium = speed of sound of the medium / frequency of the medium. This has a similar correlation to the wavelength formula. We are given that all these mediums have a frequency of 1KHz = 1000Hz, where So the wavelength of each medium =
Question 4)
Answer:

Explanation:
In an uniformly accelerated circular motion, the angle traveled by the object is given by:

Here
is the final angular speed,
is the initial angular speed and t is the time of the motion. Replacing the given values:

No that is false
Because its a organism. Which means at one point it was a live. It just died. You cant die if you were never alive. So that means that at one time was living.
But nonliving thing in science is like a piece of plastic cant breath eat die non living
If this was helpful pls mark be as brainliest!!!!!!!!
It will become a stink. It will become extinct because if people keep doing what you’re doing it will get no better.
Running on sand requires 1.6 times more energy spent than running on hard surface, so the force applied by our foot on sand is less.