To solve this problem we will apply the theorem given in the conservation of energy, by which we have that it is conserved and that in terms of potential and kinetic energy, in their initial moment they must be equal to the final potential and kinetic energy. This is,


Replacing the 5100MJ for satellite as initial potential energy, 4200MJ for initial kinetic energy and 5700MJ for final potential energy we have that



Therefore the final kinetic energy is 3600MJ
The farthest position the mouse reaches inside the tunnel is 4 meters into the tunnel.
From the graph,
The positions reached after,
5 s = 4 m
10 s = 2 m
20 s = 2 m
35 s = 3 m
40 s = 0 m
So the farthest position here is 4 m into the tunnel.
The rate of change of positions is displacement. So displacement will be change in initial and final positions divided by change in time.
s = Δx / Δt
Therefore, the farthest position the mouse reaches inside the tunnel is 4 meters into the tunnel.
To knw more about displacement
brainly.com/question/28609499
#SPJ1
Answer:
8 units
Explanation:
F=(k*q1*q2)/(r^2)
K is a constant, q1 is charge of 1, q2 is charge of 2, r is distance between the two.
The rms voltage output of the generator is 1.94 × 10⁻ ⁵ V.
RMS is an acronym for root mean squared. An RMS value is more than just the "amount of AC power that causes the same heating impact as an analogous DC power" or something along those lines.
No. of loop = 795
Diameter of the coil = 10.5 cm
Radius of the coil = 5.25 cm
Magnetic Field, B = 0.45 T
Time, t = 70.0 rev/s

Where,
N = No. of loop
A = Area of the coil
B = Magnetic Field
= Voltage rms
Area of the coil = πr²
= 86.57 cm²
w = 2π/t
=( 2 × 3.141)/70.0
= 0.089

Therefore, the rms voltage output of the generator is 1.94 × 10⁻ ⁵ V.
Learn more about rms voltage here:
brainly.com/question/13156072
#SPJ4