To solve this problem it is necessary to apply the concepts related to the kinematic equations of movement description, which determine the velocity, such as the displacement of a particle as a function of time, that is to say

Where,
x = Displacement
v = Velocity
t = Time
Our values are given as,


Replacing we have that,



Therefore the distance from Earth to the Moon is 399.000 km
Answer:
205 V
V
= 2.05 V
Explanation:
L = Inductance in Henries, (H) = 0.500 H
resistor is of 93 Ω so R = 93 Ω
The voltage across the inductor is

w = 500 rad/s
IwL = 11.0 V
Current:
I = 11.0 V / wL
= 11.0 V / 500 rad/s (0.500 H)
= 11.0 / 250
I = 0.044 A
Now
V
= IR
= (0.044 A) (93 Ω)
V
= 4.092 V
Deriving formula for voltage across the resistor
The derivative of sin is cos
V
= V
cos (wt)
Putting V
= 4.092 V and w = 500 rad/s
V
= V
cos (wt)
= (4.092 V) (cos(500 rad/s )t)
So the voltage across the resistor at 2.09 x 10-3 s is which means
t = 2.09 x 10⁻³
V
= (4.092 V) (cos (500 rads/s)(2.09 x 10⁻³s))
= (4.092 V) (cos (500 rads/s)(0.00209))
= (4.092 V) (cos(1.045))
= (4.092 V)(0.501902)
= 2.053783
V
= 2.05 V
Complete question:
A college dormitory room measures 14 ft wide by 13 ft long by 6 ft high. Weight density of air is 0.07 lbs/ft3. What is the weight of air in it under normal conditions?
Answer:
the weight of the air is 76.44 lbs
Explanation:
Given;
dimension of the dormitory, = 14 ft by 13 ft by 6 ft
density of the air, = 0.07 lbs/ft³
The volume of the air in the dormitory room = 14 ft x 13 ft x 6 ft
= 1092 ft³
The weight of the air = density x volume
= 0.07 lbs/ft³ x 1092 ft³
= 76.44 lbs
Therefore, the weight of the air is 76.44 lbs
Answer:up
Explanation:The partials are lighter