--ⓒᴄᴏɴᴠᴇᴄᴛɪᴏɴ ᴏᴄᴄᴜʀꜱ ᴡʜᴇɴ ᴘᴀʀᴛɪᴄʟᴇꜱ ᴡɪᴛʜ ᴀ ʟᴏᴛ ᴏꜰ ʜᴇᴀᴛ ᴇɴᴇʀɢʏ ɪɴ ᴀ ʟɪQᴜɪᴅ ᴏʀ ɢᴀꜱ ᴍᴏᴠᴇ ᴀɴᴅ ᴛᴀᴋᴇ ᴛʜᴇ ᴘʟᴀᴄᴇ ᴏꜰ ᴘᴀʀᴛɪᴄʟᴇꜱ ᴡɪᴛʜ ʟᴇꜱꜱ ʜᴇᴀᴛ ᴇɴᴇʀɢʏ. ... ʟɪQᴜɪᴅꜱ ᴀɴᴅ ɢᴀꜱᴇꜱ ᴇxᴘᴀɴᴅ ᴡʜᴇɴ ᴛʜᴇʏ ᴀʀᴇ ʜᴇᴀᴛᴇᴅ. ᴛʜɪꜱ ɪꜱ ʙᴇᴄᴀᴜꜱᴇ ᴛʜᴇ ᴘᴀʀᴛɪᴄʟᴇꜱ ɪɴ ʟɪQᴜɪᴅꜱ ᴀɴᴅ ɢᴀꜱᴇꜱ ᴍᴏᴠᴇ ꜰᴀꜱᴛᴇʀ ᴡʜᴇɴ ᴛʜᴇʏ ᴀʀᴇ ʜᴇᴀᴛᴇᴅ ᴛʜᴀɴ ᴛʜᴇʏ ᴅᴏ ᴡʜᴇɴ ᴛʜᴇʏ ᴀʀᴇ ᴄᴏʟᴅ.
--Ⓡʀᴀᴅɪᴀᴛɪᴏɴ ɪꜱ ᴇɴᴇʀɢʏ ᴛʜᴀᴛ ᴄᴏᴍᴇꜱ ꜰʀᴏᴍ ᴀ ꜱᴏᴜʀᴄᴇ ᴀɴᴅ ᴛʀᴀᴠᴇʟꜱ ᴛʜʀᴏᴜɢʜ ꜱᴘᴀᴄᴇ ᴀɴᴅ ᴍᴀʏ ʙᴇ ᴀʙʟᴇ ᴛᴏ ᴘᴇɴᴇᴛʀᴀᴛᴇ ᴠᴀʀɪᴏᴜꜱ ᴍᴀᴛᴇʀɪᴀʟꜱ. ... ᴛʜᴇ ᴋɪɴᴅꜱ ᴏꜰ ʀᴀᴅɪᴀᴛɪᴏɴ ᴀʀᴇ ᴇʟᴇᴄᴛʀᴏᴍᴀɢɴᴇᴛɪᴄ (ʟɪᴋᴇ ʟɪɢʜᴛ) ᴀɴᴅ ᴘᴀʀᴛɪᴄᴜʟᴀᴛᴇ (ɪ.ᴇ., ᴍᴀꜱꜱ ɢɪᴠᴇɴ ᴏꜰꜰ ᴡɪᴛʜ ᴛʜᴇ ᴇɴᴇʀɢʏ ᴏꜰ ᴍᴏᴛɪᴏɴ). ɢᴀᴍᴍᴀ ʀᴀᴅɪᴀᴛɪᴏɴ ᴀɴᴅ x ʀᴀʏꜱ ᴀʀᴇ ᴇxᴀᴍᴘʟᴇꜱ ᴏꜰ ᴇʟᴇᴄᴛʀᴏᴍᴀɢɴᴇᴛɪᴄ ʀᴀᴅɪᴀᴛɪᴏɴ
--Ⓒᴄᴏɴᴅᴜᴄᴛɪᴏɴ ɪꜱ ᴛʜᴇ ᴡᴀʏ ɪɴ ᴡʜɪᴄʜ ᴇɴᴇʀɢʏ ɪꜱ ᴛʀᴀɴꜱꜰᴇʀʀᴇᴅ (ᴛʜʀᴏᴜɢʜ ʜᴇᴀᴛɪɴɢ ʙʏ ᴄᴏɴᴛᴀᴄᴛ) ꜰʀᴏᴍ ᴀ ʜᴏᴛ ʙᴏᴅʏ ᴛᴏ ᴀ ᴄᴏᴏʟᴇʀ ᴏɴᴇ (ᴏʀ ꜰʀᴏᴍ ᴛʜᴇ ʜᴏᴛ ᴘᴀʀᴛ ᴏꜰ ᴀɴ ᴏʙᴊᴇᴄᴛ ᴛᴏ ᴀ ᴄᴏᴏʟᴇʀ ᴘᴀʀᴛ).
There are no choices on the list you provided that make such a statement,
and it's difficult to understand what is meant by "the following".
That statement is one way to describe the approach to 'forces of gravity'
taken by the theory of Relativity.
Answer:
The total work done by the two tugboats on the supertanker is 3.44 *10^9 J
Explanation:
The force by the tugboats acting on the supertanker is constant and the displacement of the supertanker is along a straight line.
The angle between the 2 forces and displacement is ∅ = 15°.
First we have to calculate the work done by the individual force and then we can calculate the total work.
The work done on a particle by a constant force F during a straight line displacement s is given by following formula:
W = F*s
W = F*s*cos∅
With ∅ = the angles between F and s
The magnitude of the force acting on the supertanker is F of tugboat1 = F of tugboat 2 = F = 2.2 * 10^6 N
The total work done can be calculated as followed:
Wtotal = Ftugboat1 s * cos ∅1 + Ftugboat2 s* cos ∅2
Wtotal = 2Fs*cos∅
Wtotal = 2*2.2*10^6 N * 0.81 *10³ m s *cos15°
Wtotal = 3.44*10^9 Nm = <u>3.44 *10^9 J</u>
<u />
The total work done by the two tugboats on the supertanker is 3.44 *10^9 J
Momentum should be conserved. The momentum of both
objects must balance with their initial and final momentum.
Let m1 and v1 be the mass and velocity of the
bowling ball
And m2 and v2 be the mass and velocity of the
bowling pin
(m1v1)i + (m2v2)i = (m1v1)f + (m2v2)f
30 kg m/s + (1.5 kg)(0 m/s) = 13kg m/s + 1.5v2f
V2f = 11.33 m/s
<span>So the momentum = 1.5 kg(11.33 m/s) = 17 kg m/s</span>
Answer:
7.36 × 10^22 kg
Explanation:
Mass of the man = 90kg
Weight on the moon = 146N
radius of the moon =1.74×10^6
Weight =mg
g= weight/mass
g= 146/90 = 1.62m/s^2
From the law of gravitational force
g = GM/r^2
Where G = 6.67 ×10^-11
M = gr^2/G
M= 1.62 × (1.74×10^6)^2/6.67×10^-11
= 4.904×10^12/6.67×10^-11
=0.735×10^23
M= 7.35×10^22kg. (approximately) with option c