Answer : The resonance structure of
is shown below.
Explanation :
Resonance structure : It is defined as when more than one Lewis structure can be drawn, the molecule or ion is said to have resonance.
Resonance is the concept where electrons (bonds) are delocalized over three or more atoms which cannot be depicted with one simple Lewis structure.
First we have to draw Lewis-dot structure.
Lewis-dot structure : It shows the bonding between the atoms of a molecule and it also shows the unpaired electrons present in the molecule.
In the Lewis-dot structure the valance electrons are shown by 'dot'.
The given molecule is, 
As we know that sulfur has '6' valence electrons, carbon has '6' valence electrons and nitrogen has '5' valence electron.
Therefore, the total number of valence electrons in
= 6 + 4 + 5 = 15
According to Lewis-dot structure, there are 7 number of bonding electrons and 8 number of non-bonding electrons.
In SCN, carbon atom is the central atom and sulfur and nitrogen are the neighboring atoms.
The resonance structure of
is shown below.
Hey there!
Al + HCl → H₂ + AlCl₃
Balance Cl.
1 on the left, 3 on the right. Add a coefficient of 3 in front of HCl.
Al + 3HCl → H₂ + AlCl₃
Balance H.
3 on the left, 2 on the right. We have to start by multiplying everything else by 2.
2Al + 3HCl → 2H₂ + 2AlCl₃
Now we have 2 on the right and 4 on the left. Change the coefficient in front of HCl from 3 to 4.
2Al + 4HCl → 2H₂ + 2AlCl₃
Now, for Cl, we have 4 on the left and 6 on the right. Change the coefficient in front of HCl again from 4 to 6.
2Al + 6HCl → 2H₂ + 2AlCl₃
Now, our H is unbalanced again. 6 on the left, 4 on the right. Change the coefficient in front of H₂ from 2 to 3.
2Al + 6HCl → 3H₂ + 2AlCl₃
Balance Al.
2 on the left, 2 on the right. Already balanced.
Here is our final balanced equation:
2Al + 6HCl → 3H₂ + 2AlCl₃
Hope this helps!
Answer:
M KIO3 = 1.254 mol/L
Explanation:
∴ w KIO3 = 553 g
∴ mm KIO3 = 214.001 g/mol
∴ volumen sln = 2.10 L
⇒ mol KIO3 = (553 g)×(mol/210.001 g) = 2.633 mol
⇒ M KIO3 = (2.633 mol KIO3 / (2.10 L sln)
⇒ M KIO3 = 1.254 mol/L
Answer:
0.645 liters
Explanation:
THE QUESTION IS equivalent 0.645 Liters
Answer:
I would expect the gas rate determined in this manner to be too low
Explanation:
A Rotameter can be designed to respond to the sensitivity of density, velocity, to measure the flow rate of liquid or gas enclosed in a tube. Liquids are denser than gas, and since the gas rate to be determined needed to respond to the velocity head alone of the rotameter so as to bring the forces in the tube equilibrium. Knowing if there is no flow, then the float would remain at the bottom, so gas has to flow at a higher rate compared to the liquid so the float would be in a similar position making it easier to measure the flowrate. This leaves the gas rate to be determined too low.