Answer:
(a) r = 6.26 * 10⁻⁷cm
(b) r₂ = 6.05 * 10⁻⁷cm
Explanation:
Using the sedimentation coefficient formula;
s = M(1-Vρ) / Nf ; where s is sedimentation coefficient, M is molecular weight, V is specific volume of protein, p is density of the solvent, N is Avogadro number, f if frictional force = 6πnr, n is viscosity of the medium, r is radius of particle
s = M ( 1 - Vρ) / N*6πnr
making r sbjct of formula, r = M (1 - Vρ) / N*6πnrs
Note: S = 10⁻¹³ sec, 1 KDalton = 1 *10³ g/mol, I cP = 0.01 g/cm/s
r = {(3.1 * 10⁵ g/mol)(1 - (0.732 cm³/g)(1 g/cm³)} / { (6.02 * 10²³)(6π)(0.01 g/cm/s)(11.7 * 10⁻¹³ sec)
r = 6.26 * 10⁻⁷cm
b. Using the formula r₂/r₁ = s₁/s₂
s₂ = 0.035 + 1s₁ = 1.035s₁
making r₂ subject of formula; r₂ = (s₁ * r₁) / s₂ = (s₁ * r₁) / 1.035s₁
r₂ = 6.3 * 10⁻⁷cm / 1.035
r₂ = 6.05 * 10⁻⁷cm
Answer:
A. ΔG° = 132.5 kJ
B. ΔG° = 13.69 kJ
C. ΔG° = -58.59 kJ
Explanation:
Let's consider the following reaction.
CaCO₃(s) → CaO(s) + CO₂(g)
We can calculate the standard enthalpy of the reaction (ΔH°) using the following expression.
ΔH° = ∑np . ΔH°f(p) - ∑nr . ΔH°f(r)
where,
n: moles
ΔH°f: standard enthalpy of formation
ΔH° = 1 mol × ΔH°f(CaO(s)) + 1 mol × ΔH°f(CO₂(g)) - 1 mol × ΔH°f(CaCO₃(s))
ΔH° = 1 mol × (-635.1 kJ/mol) + 1 mol × (-393.5 kJ/mol) - 1 mol × (-1206.9 kJ/mol)
ΔH° = 178.3 kJ
We can calculate the standard entropy of the reaction (ΔS°) using the following expression.
ΔS° = ∑np . S°p - ∑nr . S°r
where,
S: standard entropy
ΔS° = 1 mol × S°(CaO(s)) + 1 mol × S°(CO₂(g)) - 1 mol × S°(CaCO₃(s))
ΔS° = 1 mol × (39.75 J/K.mol) + 1 mol × (213.74 J/K.mol) - 1 mol × (92.9 J/K.mol)
ΔS° = 160.6 J/K. = 0.1606 kJ/K.
We can calculate the standard Gibbs free energy of the reaction (ΔG°) using the following expression.
ΔG° = ΔH° - T.ΔS°
where,
T: absolute temperature
<h3>A. 285 K</h3>
ΔG° = ΔH° - T.ΔS°
ΔG° = 178.3 kJ - 285K × 0.1606 kJ/K = 132.5 kJ
<h3>B. 1025 K</h3>
ΔG° = ΔH° - T.ΔS°
ΔG° = 178.3 kJ - 1025K × 0.1606 kJ/K = 13.69 kJ
<h3>C. 1475 K</h3>
ΔG° = ΔH° - T.ΔS°
ΔG° = 178.3 kJ - 1475K × 0.1606 kJ/K = -58.59 kJ
C6H5 is the molecular formula for Phenyl.
1. D
2. DR
3. SR
4. DR
5. C
6. SR
7. S
8. D
10. C
It’s 3 because iv done this before