Answer:
Molar mass→ 0.930 g / 6.45×10⁻³ mol = 144.15 g/mol
Explanation:
Let's apply the formula for freezing point depression:
ΔT = Kf . m
ΔT = 74.2°C - 73.4°C → 0.8°C
Difference between the freezing T° of pure solvent and freezing T° of solution
Kf = Cryoscopic constant → 5.5°C/m
So, if we replace in the formula
ΔT = Kf . m → ΔT / Kf = m
0.8°C / 5.5 m/°C = m → 0.0516 mol/kg
These are the moles in 1 kg of solvent so let's find out the moles in our mass of solvent which is 0.125 kg
0.0516 mol/kg . 0.125 kg = 6.45×10⁻³ moles. Now we can determine the molar mass:
Molar mass (mol/kg) → 0.930 g / 6.45×10⁻³ mol = 144.15 g/mol
Mixtures of sand and water or sand and iron filings, a conglomerate rock, water and oil, a portion salad, trail mix, and concrete (not cement).
Answer:
109° 27'
Explanation:
The ammonium ion is tetrahedral in shape, all the HNH bonds are exactly at the tetrahedral bond angle since there are only bond pairs in the structure and no lone pairs. Recall that lone pairs decrease the bond angke from the ideal value in a tetrahedron due to higher repulsion.
200.0 mL =0.2000 L
Molarity = number of mole solute / volume solution(L) = 0.50 mol/0.2000 L=
= 2.5 mol/L =2.5M
Answer : 2.5 M