Answer:
See explanation below
Explanation:
In this reaction we have the ethyl acetoacetate which is reacting with 2 eq of sodium etoxide. The sodium etoxide is a base and it usually behaves as a nucleophyle of many reactions. Therefore, it will atract all the acidics protons in a molecule.
In the case of the ethyl acetoacetate, the protons that are in the methylene group (CH3 - CO - CH2 - COOCH2CH3) are the more acidic protons, therefore the etoxide will substract these protons instead of the protons of the methyl groups. This is because those hydrogens (in the methylene group) are between two carbonile groups, which make them more available and acidic for any reaction. As we have 2 equivalents of etoxide, means that it will substract both of the hydrogen atoms there, and then, reacts with the Br - CH2CH2 - Br and form a product of an aldolic condensation.
The mechanism of this reaction to reach X is shown in the attached picture.
Answer:
The acceleration of the object equals the gravitational acceleration. The mass, size, and shape of the object are not a factor in describing the motion of the object. So all objects, regardless of size or shape or weight, free fall with the same acceleration
They are able to be divided by a chemical reaction
Answer:

Explanation:
We will need a balanced chemical equation with masses and molar masses, so, let's gather all the information in one place.
Mᵣ: 98.08 392.18
2Cr + 3H₂SO₄ ⟶ Cr₂(SO₄)₃ + 3H₂
To solve the stoichiometry problem, you must
- Use the molar mass of H₂SO₄ to convert the mass of H₂SO₄ to moles of H₂SO₄
- Use the molar ratio to convert moles of H₂SO₄ to moles of Cr₂(SO₄)₃
- Use the molar mass of Cr₂(SO₄)₃ to convert moles of Cr₂(SO₄)₃ to mass of Cr₂(SO₄)₃
a) Mass of Cr₂(SO₄)₃
(i) Mass of pure H₂SO₄

(ii) Moles of H₂SO₄

(iii) Moles of Cr₂(SO₄)₃
The molar ratio is 1 mol Cr₂(SO₄)₃:3 mol H₂SO₄

(iv) Mass of Cr₂(SO₄)₃

b) Percentage yield
It is impossible to get a yield of 485.9 g. I will assume you meant 185.9 g.
