The change in heat is simply equal to:
change in heat ΔH = final enthalpy – initial enthalpy
ΔH = [280.25 g * 4.18J/gC * (17.5°C)] – [280 g * 4.18J/gC
* 13.5°C]
ΔH = 4,699.89 J = 4.7 kJ
<span>Hence heat released is about 4.7 kJ</span>
Answer:
4Al + 3O2 → 2Al2O3 a. If you use 2.3 moles of Al, how many moles of Al2O3 can ... How many grams of Al2O3 are produced from the reaction of 5 moles of Al?
Explanation:
Answer:
Explanation:
In a pure metal, the electrons can be thought of as [concentrated] around atoms throughout the metal. Using molecular orbital theory, there [is ] an energy gap between the filled molecular orbitals and empty molecular orbitals. The [antibonding] orbitals are typically higher in energy and are mostly (filled]
Answer:
30 cm³
Explanation:
Step 1: Given data
- Density of aluminum (ρ): 2.7 g/cm³
- Mass of aluminum (m): 81 g
- Volume occupied by aluminum (V): ?
Step 2: Calculate the volume occupied by aluminum
The density of aluminum is equal to its mass divided by its volume.
ρ = m/V
V = m/ρ
V = 81 g / 2.7 g/cm³
V = 30 cm³
Answer:
The pressure of O₂ is 0.8 atm.
Explanation:
The pressure exerted by a particular gas in a mixture is known as its partial pressure. So, Dalton's law states that the total pressure of a gas mixture is equal to the sum of the pressures that each gas would exert if it were alone:
PT = PA + PB
This relationship is due to the assumption that there are no attractive forces between the gases.
In this case:
PT=Pnitrogen + Pcarbon dioxide + Pother gases
Being:
- Pnitrogen: 593.4 mmHg
- Pcarbon dioxide: 3 mmHg
- Pother gases: 7.1 mmHg
and replacing:
PT= 593.4 mmHg + 3 mmHg + 7.1 mmHg
you get:
PT= 603.5 mmHg
Being 760 mmHg= 1 atm, you get:
PT= 603.5 mmHg= 0.8 atm
<u><em>The pressure of O₂ is 0.8 atm.</em></u>