To answer the question above, multiply the given number of moles by the molar masses.
(A) (0.20 mole) x (32 g / 1 mole) = 6.4 grams O2
(B) (0.75 mole) x (62 g / 1 mole) = 46.5 grams H2CO3
(C) (3.42 moles) x (28 g / 1 mole) = 95.7 grams CO
(D) (4.1 moles) x (29.88 g / 1 mole) = 122.508 g Li2O
The answer to the question above is letter D.
Answer: It loses electrons to another element.
Explanation:- Oxidation is the process in which an element loses electrons and there is an increase in the oxidation state. On losing electrons it combines with a electronegative element such as oxygen, sulphur or nitrogen etc.
Reduction is the process in which an element gains electrons and there is a decrease in the oxidation state.
The answer is <span>a. kinetochore.
A kinetochore is a protein structure that holds the </span><span>sister chromatids to the spindle fibers. It is the place on chromatids where the spindle fibers bind during the cell division. As the result, sister chromatids are pulled apart to the opposite ends of the cell.</span>
Answer:
2Fe + 6HC2H3O2 → 2Fe(C2H3O2)3 + 3H2
Explanation:
There you go
Here we will use the general formula of Nernst equation:
Ecell = E°Cell - [(RT/nF)] *㏑Q
when E cell is cell potential at non - standard state conditions
E°Cell is standard state cell potential = - 0.87 V
and R is a constant = 8.314 J/mol K
and T is the temperature in Kelvin = 73 + 273 = 346 K
and F is Faraday's constant = 96485 C/mole
and n is the number of moles of electron transferred in the reaction=2
and Q is the reaction quotient for the reaction
SO42-2(aq) + 4H+(aq) +2Br-(aq) ↔ Br2(aq) + SO2(g) +2H2O(l)
so by substitution :
0 = -0.87 - [(8.314*346K)/(2* 96485)*㏑Q → solve for Q
∴ Q = 4.5 x 10^-26