Answer:
0.0583g
Explanation:
The equation of the reaction is;
2HNO3(aq) + Mg(OH)2(aq) -------> Mg(NO3)2(aq) + 2H2O(l)
From the question, number of moles of HNO3 reacted= concentration × volume
Concentration of HNO3= 0.100 M
Volume of HNO3 = 20.00mL
Number of moles of HNO3= 0.100 × 20/1000
Number of moles of HNO3 = 2×10^-3 moles
From the reaction equation;
2 moles of HNO3 reacts with 1 mole of Mg(OH)2
2×10^-3 moles reacts with 2×10^-3 moles ×1/2 = 1 ×10^-3 moles of Mg(OH)2
But
n= m/M
Where;
n= number of moles of Mg(OH)2
m= mass of Mg(OH)2
M= molar mass of Mg(OH)2
m= n×M
m= 1×10^-3 moles × 58.3 gmol-1
m = 0.0583g
Answer is: A) Sr (strontium).
The reactivity series<span> is a series of metals from highest to lowest reactivity.</span><span> Metal higher in the reactivity series will displace another.
</span>Strontium is only higher in this group from magnesium. Strontium is stronger reducing agent than magnesium, gives electrons easier.
<span>Table salt is inorganic
TNT is organic
Glucose is organic
2,4-D is organic
Limestone is inorganic
Water is inorganic
What makes a compound organic is the presence of a carbon, with the exception of cabonates. In this case all of the compounds in this list that have carbon except for CaCO3, are organic and the other compounds are inorganic.</span>
The amount of energy released is calculated by the product of heat of fusion and mass.
The formula of amount energy released is given by:
(1)
Here,
q is amount of energy released
L is heat of fusion (
)
m is mass of water
Put all the given values in equation (1)

≅ 

Thus, amount of energy released is 