12.8 mole of CO2 from the combustion
Answer: 0.25 mol
Explanation:
Use the formula n=N/NA
n= number of mols
N = number of particles
Nᵃ = Avogadros constant = 6.02 x
So, n=
The 10 to the power of 23 cancels out and you are left with 1.505/6.02, which is approximately 1/4. This is the same as 0.25 mol.
Hope this helped :)
Answer:
hi I'm sorry I can't I just need points
Answer:

Explanation:
Formula for the calculation of no. of Mol is as follows:

Molecular mass of Ag = 107.87 g/mol
Amount of Ag = 5.723 g

Molecular mass of S = 32 g/mol
Amount of S = 0.852 g

Molecular mass of O = 16 g/mol
Amount of O = 1.695 g

In order to get integer value, divide mol by smallest no.
Therefore, divide by 0.02657



Therefore, empirical formula of the compound = 
Answer:
Average atomic mass = 10.812 amu
Explanation:
The formula for the calculation of the average atomic mass is:
Given that:
<u>For first isotope, Boron-10:
</u>
% = 19.8 %
Mass = 10.013 amu
<u>For second isotope, Boron-11:
</u>
% = 80.2 %
Mass = 11.009 amu
Thus,
<u>Average atomic mass = 10.812 amu</u>