Answer:
65.2L
Explanation:
Using the general gas equation;
PV = nRT
Where;
P = pressure (atm)
V = volume (Litres)
n = number of moles (mol)
R = gas law constant (0.0821 Latm/molK)
T = temperature (Kelvin)
According to the information provided in this question,
P = 1.631 atm
V = ?
n = 4.3 moles
T = 28°C = 28 + 273 = 301K
Using PV = nRT
V = nRT/P
V = 4.3 × 0.0821 × 301 ÷ 1.631
V = 106.26 ÷ 1.631
V = 65.15
Volume of the gas = 65.2L
Rise, decrease, away from ocean, towards land
Answer: pH of resulting solution will be 13
Explanation:
pH is the measure of acidity or alkalinity of a solution.
Moles of
ion = 
Moles of
ion = 

For neutralization:
1 mole of
ion will react with 1 mole of
ion
0.01 mol of
ion will react with =
of
ion
Thus (0.012-0.01)= 0.002 moles of
are left in 20 ml or 0.02 L of solution.
![[OH^-]=\frac{0.002}{0.02L}=0.1M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D%5Cfrac%7B0.002%7D%7B0.02L%7D%3D0.1M)
![pOH=-log[OH^-]](https://tex.z-dn.net/?f=pOH%3D-log%5BOH%5E-%5D)
![pOH=-log[0.1]=1](https://tex.z-dn.net/?f=pOH%3D-log%5B0.1%5D%3D1)


Thus the pH of resulting solution will be 13
Na₂CO₃ is a stronger base while
Na₂CO₃ puts more OH- ion into solution
The strongest base is [H₊]= 10 - 12
The strongest acid is PH = 0.5
If an acid is added to neutral water the H₊
will increase but when an acid added to neutral water
the OH⁻ will decrease.