Answer:
<h2>464.85 mL</h2>
Explanation:
The new volume can be found by using the formula for Boyle's law which is

Since we're finding the new volume

100.7 kPa = 100,700 Pa
95.1 kPa = 95,100 Pa
We have

We have the final answer as
<h3>464.85 mL</h3>
Hope this helps you
Here we will use the general formula of Nernst equation:
Ecell = E°Cell - [(RT/nF)] *㏑Q
when E cell is cell potential at non - standard state conditions
E°Cell is standard state cell potential = - 0.87 V
and R is a constant = 8.314 J/mol K
and T is the temperature in Kelvin = 73 + 273 = 346 K
and F is Faraday's constant = 96485 C/mole
and n is the number of moles of electron transferred in the reaction=2
and Q is the reaction quotient for the reaction
SO42-2(aq) + 4H+(aq) +2Br-(aq) ↔ Br2(aq) + SO2(g) +2H2O(l)
so by substitution :
0 = -0.87 - [(8.314*346K)/(2* 96485)*㏑Q → solve for Q
∴ Q = 4.5 x 10^-26
The correct answer is greenhouse gases. It is the most abundant gases among the choices in the atmosphere. These gases are water vapor, methane, nitrous oxide, ozone and carbon dioxide. Without these gases, the temperature of Earth will be about -18 degrees Celsius.
Answer:
Mass = 785.9 g
Explanation:
Given data:
Atoms of gold = 2.4 × 10²⁴ atoms
Mass of gold = ?
Solution:
First of all we will convert the number of atoms into moles.
2.4 × 10²⁴ atoms × 1 mol/ 6.02 × 10²³ atoms
number of moles = 3.99 mol
Now we will determine the mass of gold.
Mass = number of moles × molar mass
Mass = 3.99 mol × 196.97 g/mol
Mass = 785.9 g
Answer:
Aluminum is a shiny, silvery white colored metal that is light in weight and strong. Th density of aluminum is 2.7 g/mL, which means the metal will sink in water, but is still relatively light
Hope this helps (:
Mark me brainliest if its good for you :D take care.