Answer:
<u>note:
</u>
<u>solution is attached in word form due to error in mathematical equation. furthermore i also attach Screenshot of solution in word due to different version of MS Office please find the attachment
</u>
let us consider that the two charges are of opposite nature .hence they will constitute a dipole .the separation distance is given as d and magnitude of each charges is q.
the mathematical formula for potential is 
for positive charges the potential is positive and is negative for negative charges.
the formula for electric field is given as-
for positive charges,the line filed is away from it and for negative charges the filed is towards it.
we know that on equitorial line the potential is zero.hence all the points situated on the line passing through centre of the dipole and perpendicular to the dipole length is zero.
here the net electric field due to the dipole can not be zero between the two charges,but we can find the points situated on the axial line but outside of charges where the electric field is zero.
now let the two charges of same nature.let these are positively charged.
here we can not find a point between two charges and on the line joining two charges where the potential is zero.
but at the mid point of the line joining two charges the filed is zero.
Answer: The work done in J is 324
Explanation:
To calculate the amount of work done for an isothermal process is given by the equation:

W = amount of work done = ?
P = pressure = 732 torr = 0.96 atm (760torr =1atm)
= initial volume = 5.68 L
= final volume = 2.35 L
Putting values in above equation, we get:

To convert this into joules, we use the conversion factor:

So, 
The positive sign indicates the work is done on the system
Hence, the work done for the given process is 324 J
-GMm/2r is the total energy of the mass m if it is in a circular orbit about mass M.
Given
A particle of mass m moving under the influence of a fixed mass's M, gravitational potential energy of formula -GMm/r, where r is the separation between the masses and G is the gravitational constant of the universe.
As the Gravity Potential energy of particle = -GMm/r
Total energy of particle = Kinetic energy + Potential Energy
As we know that
Kinetic energy = 1/2mv²
Also, v is equals to square root of GM/r
v = √GM/r
Put the value of v in the formula of kinetic energy
We get,
Kinetic Energy = GMm/2r
Total Energy = GMm/2r + (-GMm/r)
= GMm/2r - GMm/r
= -GMm/2r
Hence, -GMm/2r is the total energy of the mass m if it is in a circular orbit about mass M.
Learn more about Gravitational Potential Energy here brainly.com/question/15896499
#SPJ4
Answer:
Atomic mass is defined as the number of protons and neutrons in an atom, where each proton and neutron has a mass of approximately 1 amu (1.0073 and 1.0087, respectively). The electrons within an atom are so miniscule compared to protons and neutrons that their mass is negligible.
I hope this is the answer you were looking for :D