Answer: Mid-ocean ridges are geologically important because they occur along the kind of plate boundary where new ocean floor is created as the plates spread apart. Thus the mid-ocean ridge is also known as a "spreading center" or a "divergent plate boundary." The plates spread apart at rates of 1 cm to 20 cm per year.
Answer:
a) the values of the angle α is 45.5°
b) the required magnitude of the vertical force, F is 41 lb
Explanation:
Applying the free equilibrium equation along x-direction
from the diagram
we say
∑Fₓ = 0
Pcosα - 425cos30° = 0
525cosα - 368.06 = 0
cosα = 368.06/525
cosα = 0.701
α = cos⁻¹ (0.701)
α = 45.5°
Also Applying the force equation of motion along y-direction
∑Fₓ = ma
Psinα + F + 425sin30° - 600 = (600/32.2)(1.5)
525sin45.5° + F + 212.5 - 600 = 27.95
374.46 + F + 212.5 - 600 = 27.95
F - 13.04 = 27.95
F = 27.95 + 13.04
F = 40.99 ≈ 41 lb
Answer:
<em>The final velocity is 20 m/s.</em>
Explanation:
<u>Constant Acceleration Motion</u>
It's a type of motion in which the velocity of an object changes by an equal amount in every equal period of time.
Being a the constant acceleration, vo the initial speed, and t the time, the final speed can be calculated as follows:

The provided data is: vo=10 m/s,
, t=2 s. The final velocity is:


The final velocity is 20 m/s.
A) 
The total energy of the system is equal to the maximum elastic potential energy, that is achieved when the displacement is equal to the amplitude (x=A):
(1)
where k is the spring constant.
The total energy, which is conserved, at any other point of the motion is the sum of elastic potential energy and kinetic energy:
(2)
where x is the displacement, m the mass, and v the speed.
We want to know the displacement x at which the elastic potential energy is 1/3 of the kinetic energy:

Using (2) we can rewrite this as

And using (1), we find

Substituting
into the last equation, we find the value of x:

B) 
In this case, the kinetic energy is 1/10 of the total energy:

Since we have

we can write

And so we find:
