Like a seesaw, it shows that the forces aren’t equal because if it was the seesaw would stay put
A. an accelerating charged charged particle or changing magnetic fields
<h2>~<u>Solution</u> :-</h2>
- Here, the <u>moment arm</u> is defined as follows;
The magnitude of two forces, which when acting at right angle produce resultant force of VlOkg and when acting at 60° produce resultant of Vl3 kg. These forces are D. gravitational force of attraction towards the centre of the earth. A sample of metal weighs 219 gms in air, 180 gms in water, 120 gms in an <em>unknown fluid</em>.

A system that repeats to and from its mean or rest point. that executes harmonic motion. a few examples I've heard of are since the springtime a mass-spring system,a swing, simple pendulum, one more example is a steel ball rolling in a curved is this what you need or do you need three more sentences dish. to get S.H.M a body just displaced away from the resting position and of course then is released. the human body oscillates due to the reinforce that pulls it back do you need anything else answered on this and I'll answer it
Answer:
c)by a factor of four
Explanation:
The total energy of a simple harmonic oscillator is given by

where
k is the spring constant of the oscillator
A is the amplitude of the motion
In this problem, the amplitude of the oscillator is doubled, so
A' = 2A
Therefore, the new total energy is

So, the total energy increases by a factor 4.