Answer:
Bi. Current in 15.4 Ω (R₁) is 7.14 A.
Bii. Current in 21.9 Ω (R₂) is 5.02 A.
Biii. Current in 11.7 Ω (R₃) is 9.40 A.
C. Total current in the circuit is 21.56 A.
Explanation:
Bi. Determination of the current in 15.4 Ω (R₁)
Voltage (V) = 110 V
Resistance (R₁) = 15.4 Ω
Current (I₁) =?
V = I₁R₁
110 = I₁ × 15.4
Divide both side by 15.4
I₁ = 110 / 15.4
I₁ = 7.14 A
Therefore, the current in 15.4 Ω (R₁) is 7.14 A.
Bii. Determination of the current in 21.9 Ω (R₂)
Voltage (V) = 110 V
Resistance (R₂) = 21.9 Ω
Current (I₂) =?
V = I₂R₂
110 = I₂ × 21.9
Divide both side by 21.9
I₂ = 110 / 21.9
I₂ = 5.02 A
Therefore, the current in 21.9 Ω (R₂) is 5.02 A
Biii. Determination of the current in 11.7 Ω (R₃)
Voltage (V) = 110 V
Resistance (R₃) = 11.7 Ω
Current (I₃) =?
V = I₃R₃
110 = I₃ × 11.7
Divide both side by 11.7
I₃ = 110 / 11.7
I₃ = 9.40 A
Therefore, the current in 11.7 Ω (R₃) is 9.40 A.
C. Determination of the total current.
Current 1 (I₁) = 7.14 A
Current 2 (I₂) = 5.02 A
Current 3 (I₃) = 9.40 A
Total current (Iₜ) =?
Iₜ = I₁ + I₂ + I₃
Iₜ = 7.14 + 5.02 + 9.40
Iₜ = 21.56 A
Therefore, the total current in the circuit is 21.56 A
Air pressure is the wi get of air molecules pressing down on the earth. The pressure of the air molecules changes as you move upward from sea level into the atmosphere, the highest pressure is at sea level where the density of the air molecules is the greatest.
Answer:
(E) a greatly increased number of small particles in Earth’s orbit would result in a blanket of reflections that would make certain valuable telescope observations impossible
Explanation:
The trade is one strong reflection for many weak reflections (and more dangerous near-Earth space travel).
None of the answer choices except the last one has anything to do with the effect of exploding a satellite. When you are arguing that exploding a satellite is ill conceived, you need to address specifically the effects of exploding the satellite.
Answer:
Yes it would be different on Earth and the moon
The answer would be acceleration.