From an energy balance, we can use this formula to solve for the angular speed of the chimney
ω^2 = 3g / h sin θ
Substituting the given values:
ω^2 = 3 (9.81) / 53.2 sin 34.1
ω^2 = 0.987 /s
The formula for radial acceleration is:
a = rω^2
So,
a = 53.2 (0.987) = 52.494 /s^2
The linear velocity is:
v^2 = ar
v^2 = 52.949 (53.2) = 2816.887
The tangential acceleration is:
a = r v^2
a = 53.2 (2816.887)
a = 149858.378 m/s^2
If the tangential acceleration is equal to g:
g = r^2 3g / sin θ
Solving for θ
θ = 67°
Answer:
c. 0.02 C and 4 J
Explanation:
Applying,
Q = CV................ Equation 1
Where Q = Charge, C = Capacitance of the capacitor, V = Voltage.
From the question,
Given: C = 50 μF = 50×10⁻⁶ F, V = 400 V
Substitute these values into equation 1
Q = (50×10⁻⁶)(400)
Q = 0.02 C.
Also Applying
E = CV²/2............. Equation 2
Where E = Energy stored.
Therefore,
E = (50×10⁻⁶ )(400²)/2
E = 4 J
Hence the right option is c. 0.02 C and 4 J
Answer:
When the blood and the dialysate are flowing in the same direction, as the the dialysate and the blood move away from the region of higher concentration of the urea, to a region distant from the source, the concentration of urea in the blood stream and in the dialysis reach equilibrium and diffusion across the semipermeable membrane stops within the higher filter regions such as II, III, IV or V
However, for counter current flow, as the concentration of the urea in the blood stream becomes increasingly lesser the, it encounters increasingly unadulterated dialysate coming from the dialysate source, such that diffusion takes place in all regions of the filter
Explanation:
Applications of Gas Law in Real Life. A torch used to heat up the and rise the air temperature inside the balloon. This cause the air volume inside the balloon to increased and becoming less dense than the surrounding air. ... The air in the ears will change its volume then causes yours ears to pop due to the strain.