Given Information:
Diameter of spherical cell = 0.040 mm
thickness = L = 9 nm
Resistivity = ρ = 3.6×10⁷ Ω⋅m
Dielectric constant = k = 9.0
Required Information:
time constant = τ = ?
Answer:
time constant = 2.87×10⁻³ seconds
Explanation:
The time constant is given by
τ = RC
Where R is the resistance and C is the capacitance.
We know that resistivity of of any material is given by
ρ = RA/L
R = ρL/A
Where area of spherical cell is given by
A = 4πr²
A = 4π(d/2)²
A = 4π(0.040×10⁻³/2)²
A = 5.026×10⁻⁹ m²
The resistance becomes
R = (3.6×10⁷*9×10⁻⁹)/5.026×10⁻⁹
R = 6.45×10⁷ Ω
The capacitance of the cell membrane is given by
C = kεoA/L
Where k = 9 is the dielectric constant and εo = 8.854×10⁻¹² F/m
C = (9*8.854×10⁻¹²*5.026×10⁻⁹)/9×10⁻⁹
C = 44.5 pF
C = 44.5×10⁻¹² F
Therefore, the time constant is
τ = RC
τ = 6.45×10⁷*44.5×10⁻¹²
τ = 2.87×10⁻³ seconds
The answer is apparent weight is zero.
You are still accelerating downwards at 9.8m/s^2 (if you are on Earth).
You still are being affected by the Earth's gravity.
Not all because of the previous two statements.
Not none because apparent weight is zero as you are falling.
Answer:
v=5.86 m/s
Explanation:
Given that,
Length of the string, l = 0.8 m
Maximum tension tolerated by the string, F = 15 N
Mass of the ball, m = 0.35 kg
We need to find the maximum speed the ball can have at the top of the circle. The ball is moving under the action of the centripetal force. The length of the string will be the radius of the circular path. The centripetal force is given by the relation as follows :

v is the maximum speed

Hence, the maximum speed of the ball is 5.86 m/s.
Answer:
Explanation:
The "traditional" form of Coulomb's law, explicitly the force between two point charges. To establish a similar relationship, you can use the integral form for a continuous charge distribution and calculate the field strength at a given point.
In the case of moving charges, we are in presence of a current, which generates magnetic effects that in turn exert force on moving charges, therefore, no longer can consider only the electrostatic force.