<span>First of all, the maximum speed occurs when the object passes through the
equilibrium position
The kinetic energy when the object has this max speed is
K= 1/2 * mass * (1.25 m/s)^2
The potential energy in the spring when the speed is equal to zero
U= 1/2 * k * xmax^2
The maximun force of the spring is
mass*acceleration = k*xmax
m * 6.89 m/s2 = k * xmax
xmax = 6.89* m / k
0.5 * m * 1.56 = 0.5 * k * xmax^2
</span>m * 1.56 = k * (<span>6.89* m / k )^2 </span>
<span>
1.56 m = 47.47 m^2 / k
m/k = 0.032862
period = 2 *pi*sqrt[m/k]
= 2 pi </span><span>sqrt [ </span><span>0.032862]
= 1.139 s
A fourth of the period elapses between the instants of max acceleration and maximum speed
= 1/4* period
= 1/4 * </span><span><span>1.139 s </span>
= 0.284s </span>
The concept to develop this problem is the Law of Malus. Which describes what happens with the light intensity once it passes through a polarized material.
Mathematically this can be expressed as

Where
I = New intensity after pass through the Polarizer
= Original intensity
= Indicates the angle between the axis of the analyzer and the polarization axis of the incident light.
When the light passes perpendicularly through the first polarizer, the light intensity is reduced by half which will cause the intensity to be
at the output of the new polarizer, mathematically:


Solving to find the angle we have

The orientation angle of the second polarizer relative to the first one is 43.11°
Answer:
the required electrical power when the room air and surroundings are at 30°C.= 52.51822 Watt
Explanation:
Power required to maintain the surface temperature at 150°C from 20°C
P= εσA(T^4-t^4)
P= power in watt
ε= emissivity
A= area of surface
T= 150°C= 423 K
t= 20°C= 303K
/sigma= 5.67×10^{-8} watt/m^2K^4
putting vales we get

P=52.51822 Watt
the required electrical power when the room air and surroundings are at 30°C.= 52.51822 Watt
Answer:

Explanation:
Here we know that initial temperature of ice is given as

now the latent heat of ice is given as

now we also know that the mass of ice is

so here we know that heat required to change the phase of the ice is given as



<span>An endothermic reaction will start when the required ΔH energy is received from the environment or solution this is false as the reaction may require energy in excess to start the reaction</span>