Answer:
Time interval for which magnetic field reduced to ZERO is given as

Explanation:
As we know that the flux linked with one coil is given as


now total flux of all coils is given as

now let say the flux is reduced to ZERO after time "t"
so as per Faraday's law EMF induced in the coil is given as

now the current in the coil is given as


so the time interval is given as

igneous rocks, and can either be entrusive or extrusive.
Explanation:
I am not expect I am ambitious
Answer:
0.1 L
Explanation:
From the question given above, we obtained the following data:
Initial volume (V₁) = 0.05 L
Initial Pressure (P₁) = 207 KPa
Final pressure (P₂) = 101 KPa
Final volume (V₂) =?
We can obtain the new volume (i.e the final volume) of the gas by using the Boyle's law equation as illustrated below:
P₁V₁ = P₂V₂
207 × 0.05 = 101 × V₂
10.35 = 101 × V₂
Divide both side by 101
V₂ = 10.35 / 101
V₂ = 0.1 L
Thus, the new volume of the gas is 0.1 L
Answer:
hello your question lacks the required diagram attached below is the complete question with the required diagram
answer : Qtotal = 807.4 Mw
Explanation:
Given Data :
disk properties :
∈ = 0.65
D = 200 mm
Ts = 400⁰c
attached below is the detailed solution
The total rate of Heat transferred from the disk
Qtotal = 807.4 Mw