Answer:
If the volume of the container is decreased by a factor of 2 the pressure is is increased by the same factor to 1664 torr.
Explanation:
Here we have Boyle's law which states that, at constant temperature, the volume of a given mass of gas is inversely proportional to its pressure
V ∝ 1/P or V₁·P₁ = V₂·P₂
Where:
V₁ = Initial volume
V₂ = Final volume = V₁/2
P₁ = Initial pressure = 832 torr
P₂ = Final pressure = Required
From V₁·P₁ = V₂·P₂ we have,
P₂ = V₁·P₁/V₂ = V₁·P₁/(V₁/2)
P₂ = 2·V₁·P₁/V₁ = 2·P₁ = 2× 832 torr = 1664 torr
Answer
321.8 g CaF2
321.5 g Al2(CO3)3
Answer : The correct option is, (B)
Solution :
According to the Graham's law, the rate of effusion of gas is inversely proportional to the square root of the molar mass of gas.
or,
..........(1)
where,
= rate of effusion of unknown gas =
= rate of effusion of oxygen gas =
= molar mass of unknown gas = ?
= molar mass of oxygen gas = 32 g/mole
Now put all the given values in the above formula 1, we get:
The unknown gas could be carbon dioxide that has approximately 44 g/mole of molar mass.
Thus, the unknown gas could be carbon dioxide