Answer:
Steps:
1. Create a text file that contains blade diameter (in feet), wind velocity (in mph) and the approximate electricity generated for the year
2. load the data file for example, in matlab, use ('fileame.txt') to load the file
3. create variables from each column of your data
for example, in matlab,
x=t{1}
y=t{2}
4. plot the wind velocity and electricity generated.
plot(x, y)
5. Label the individual axis and name the graph title.
title('Graph of wind velocity vs approximate electricity generated for the year')
xlabel('wind velocity')
ylabel('approximate electricity generated for the year')
Answer:Turning
Explanation: Turning is the process in which the work piece is subjected to machining so that excess part is removed with the help of rotation by turning machine or lathe machine.The cutter tool is used for cutting the excess of the work piece and it is mostly single-pointed so that give accurate removal of the excess of work piece.At times , according to the requirement multi-pointed tool is also used Therefore, the correct option is turning.
Answer:
used for ordinary combustibles, such as wood, paper, some plastics, and textiles. This class of fire requires the heat-absorbing effects of water or the coating effects of certain dry chemicals.
Explanation:
Answer:
b) False
Explanation:
Viscosity:
Viscosity is a fluid property and comes in the picture when fluid in the motion.In Simple words viscosity is the frictional force offered by fluid between the fluid layer.Viscosity provides a resistant to flow of fluid.
Generally viscosity are of two types
1.Dynamics viscosity
2.Kinematics viscosity
Generally in liquids when temperature of fluid is increases then molecular force between fluid particle goes to decreases.Due to this viscosity of liquids will decrease.
So our option b is right.
Answer:
u_e = 9.3 * 10^-8 J / m^3 ( 2 sig. fig)
Explanation:
Given:
- Electric Field strength near earth's surface E = 145 V / m
- permittivity of free space (electric constant) e_o = 8.854 *10^-12 s^4 A^2 / m^3 kg
Find:
- How much energy is stored per cubic meter in this field?
Solution:
- The solution requires the energy density stored between earth's surface and the source of electric field strength. The formula for charge density is given by:
u_e = 0.5*e_o * E^2
- Plug in the values given:
u_e = 0.5*8.854 *10^-12 *145^2
u_e = 9.30777 * 10^-8 J/m^3