Answer:
the given statement is False
Explanation:
given,
distance of the trail = 2000 miles long
each rider traveled = 100 miles
every fresh horse travel = 10 miles
to maintain speed of = 10 mile/hr
the given statement is
150 horses is used for each delivery.
if each horse is allowed to travel 10 miles to travel
distance traveled using 150 horses = 150 x 10
= 1500 miles
to travel 2000 miles horse required is equal to 200.
so, the given statement is False
Answer:
Yes, correct
Explanation:
velocity, v = 470 m/s
radius, r = 0.15 m
The radial acceleration is the centripetal acceleration which always acts towards the centre of the circular centrifuge.
The formula for the centripetal acceleration is given by


a = 1472666.667
a = 150272.1 g
According to the question, we can get the acceleration as mentioned. So the claim is correct.
The first three harmonics of the string are 131.8 Hz, 263.6 Hz and 395.4 Hz.
<h3>
Velocity of the wave</h3>
The velocity of the wave is calculated as follows;
v = √T/μ
where;
- T is tension
- μ is mass per unit length = 2 g/m = 0.002 kg/m
v = √(50/0.002)
v = 158.1 m/s
<h3>First harmonic or fundamental frequency of the wave</h3>
f₀ = v/λ
where;
f₀ = v/2L
f₀ = 158.1/(2 x 0.6)
f₀ = 131.8 Hz
<h3>Second harmonic of the wave</h3>
f₁ = 2f₀
f₁ = 2(131.8 Hz)
f₁ = 263.6 Hz
<h3>Third harmonic of the wave</h3>
f₂ = 3f₀
f₂ = 3(131.8 Hz)
f₂ = 395.4 Hz
Thus, the first three harmonics of the string are 131.8 Hz, 263.6 Hz and 395.4 Hz.
Learn more about harmonics here: brainly.com/question/4290297
#SPJ1
Answer:
The magnitude of the magnetic force this particle experiences is
.
Explanation:
Given that,
Velocity v= (3i-5j+k) m/s
Magnetic field B=(i+2j-k) T
We need to calculate the value 

We need to calculate the magnitude of the magnetic force this particle experiences
Using formula of magnetic force

Put the value into the formula



Hence, The magnitude of the magnetic force this particle experiences is
.