As we move above up from one trophic level to another in
an energy pyramid, what happens to the energy?
a. It decreases from one trophic level to another.
b. It remains the same for each trophic level.
c. It increases from one trophic level to another.
As we move above up from one trophic level to another in
an energy pyramid, the energy level decreases from one trophic level to
another. The answer is letter A.
Answer:
False
Explanation:
When the location of the poles changes in the z-plane, the natural or resonant frequency (ω₀) changes which in turn changes the damped frequency (ωd) of the system.
As the poles of a 2nd-order discrete-time system moves away from the origin then natural frequency (ω₀) increases, which in turn increases damped oscillation frequency (ωd) of the system.
ωd = ω₀√(1 - ζ)
Where ζ is called damping ratio.
For small value of ζ
ωd ≈ ω₀
60,000 is 100 times as much as 600
A) No, the equations presented above are the product of the derivation of position and velocity when the acceleration is constant.
The equations change to polynomial function of the second degree for the description of the acceleration when described as a function of time.
B) Yes, when the acceleration is zero it is concluded that the velocity is constant, therefore they could be used to describe the position as a function of the change in velocity.
Answer:
(a) the tangential speed of a point at the edge is 3.14 m/s
(b) At a point halfway to the center of the disc, tangential speed is 1.571 m/s
Explanation:
Given;
angular speed of the disc, ω = 500 rev/min
diameter of the disc, 120 mm
radius of the disc, r = 60 mm = 0.06 m
(a) the tangential speed of a point at the edge is calculated as follows;
Tangential speed, v = ωr
v = 52.37 rad/s x 0.06 m
v = 3.14 m/s
(b) at the edge of the disc, the distance of the point = radius of the disc
at half-way to the center, the distance of the point = half the radius.
r₁ = ¹/₂r = 0.5 x 0.06 m = 0.03 m
The tangential velocity, v = ωr₁
v = 52.37 rad/s x 0.03 m
v = 1.571 m/s