Answer:
Explanation:
As we know that the ball is projected upwards so that it will reach to maximum height of 16 m
so we have

here we know that

also we have

so we have


Now we need to find the height where its speed becomes half of initial value
so we have

now we have





The answer is a because if you look really close
Answer:
V = 50 volts
Explanation:
Given that,
Resistance, R = 10 ohms
Current, I = 5 A
We need to find the potential difference across the circuit. We know that,
V = IR
Put all the values,
V = 5 × 10
V = 50 volts
Hence, the potential difference is equal to 50 volts.
Complete Question
A 10 gauge copper wire carries a current of 20 A. Assuming one free electron per copper atom, calculate the drift velocity of the electrons. (The cross-sectional area of a 10-gauge wire is 5.261 mm2.)
mm/s
Answer:
The drift velocity is 
Explanation:
From the question we are told that
The current on the copper is 
The cross-sectional area is
The number of copper atom in the wire is mathematically evaluated

Where
is the density of copper with a value 
is the Avogadro's number with a value 
Z is the molar mass of copper with a value 
So
Given the 1 atom is equivalent to 1 free electron then the number of free electron is

The current through the wire is mathematically represented as

substituting values

=> 
Answer:
The height at which the object is moved is 10 meters.
Explanation:
Given that,
Force acting on the object, W = F = 490 N
The gravitational potential energy, P = 4900 J
We need to find the height at which the object is moved. We know that the gravitational potential energy is possessed due to its position. It is given by :

So, the height at which the object is moved is 10 meters. Hence, this is the required solution.