Answer:
3a, 2b,4c,1d
Explanation:
what do I need to explain just something you know
The conservation of energy always holds true even when not clearly observable in machines that are less than 100% efficient. More often than not a machine will suffer energy losses (e.g. consider for a cooling fan: friction between the rotating blades, drag resistance in the air the fan is pushing around, resistance in the wire, and heat radiating/conducting away from the circuitry).
Use ideal gas equation, with T constant.
pV =nRT => pV / n = RT = constant
n = K* [units of particles]
pV / [units of particles] = constant
13 psi * 160 mL / 15 units = p * 150 mL / 10 units =>
=> p = [13psi*160mL/15units]*[10units/150mL] = 9.2 psi
Answer:
The time interval of acceleration for the bus is 2.20 seconds
Explanation:
Acceleration is the rate of change of velocity
→ 
where a is the acceleration, v is the final velocity, u is the initial velocity
and t is the time
The given is:
The uniform acceleration = -4.1 m/s²
The bus slows from 9 m/s to 0 m/s
We need to find the time interval of acceleration for the bus
Lets use the rule above
→ a = -4.1 m/s² , v = 0 m/s , u = 9 m/s
→ 
Multiply both sides by t
→ -4.1 t = -9
Divide both sides by -4.1
∴ t = 2.20 seconds
<em>The time interval of acceleration for the bus is 2.20 seconds</em>
Answer:
5 miles
Explanation:
the bus is going 60km/hour meaning its going a mile a minute and it went on for 5 minutes meaning it went for 5 minutes/