The quantity of heat must be removed is 1600 cal or 1,6 kcal.
<h3>Explanation : </h3>
From the question we will know if the condition of ice is at the latent point. So, the heat level not affect the temperature, but it can change the object existence. So, for the formula we can use.

If :
- Q = heat of latent (cal or J )
- m = mass of the thing (g or kg)
- L = latent coefficient (cal/g or J/kg)
<h3>Steps : </h3>
If :
- m = mass of water = 20 g => its easier if we use kal/g°C
- L = latent coefficient = 80 cal/g
Q = ... ?
Answer :

So, the quantity of heat must be removed is 1600 cal or 1,6 kcal.
<u>Subject : Physics </u>
<u>Subject : Physics Keyword : Heat of latent</u>
I would think that you would multiply then divide
<h2>
Depth of river is 4.48 m</h2>
Explanation:
Discharge = Area x Velocity
Discharge of river = Discharge of stream 1 + Discharge of stream 2

Area of stream 1 = w₁ x d₁ = 8.9 x 3.8 = 33.82 m²
Area of stream 2 = w₂ x d₂ = 6.5 x 3.9 = 25.35 m²
Velocity of stream 1 = 2.3 m/s
Velocity of stream 2 = 2.6 m/s
Velocity of river = 3 m/s

Substituting

Depth of river = 4.48 m
Answer:
E = 3.04 10⁻⁵ N / C
Explanation:
In this problem we can use the kinematics to find how long it takes the electron to travel the plates
Let's start by reducing the magnitudes to the SI system
vₓ = 5.35 10⁶ m / s
x = 2 cm = 2 10⁻² m
y = 1 cm = 1 10⁻² m
x = vₓ t
t = x / vₓ
t = 2 10⁻² / 5.35 10⁶
t = 3,738 10⁻⁹ s
This time is also the time it takes for vertical movement to go from the center to the plate, let's look for acceleration with Newton's second law
F = m a
a = F / m = e E / m
y =
+ ½ a t²
= 0
We replace
y = ½ e / m E t²
E = 2 y m / e t²
Let's calculate
E = 2 1 10⁻² 9.1 10⁻³¹ / (1.6 10⁻¹⁹ 3,738 10⁻⁹)
E = 18.2 10⁻³³ / 5.98 10⁻²⁸
E = 3.04 10⁻⁵ N / C