Answer:
a. by collisions and mergers of planetesimals.
Explanation:
Inner planets are planets within 1.5 AU distance from the sun. These are called terrestrial planets because they are somewhat similar to Earth, mainly made of rocks.
The main ingredient of these planets are solar nebula and interstellar dust condensation of which leads to formation of small rock particles. These particles come close to each other under in the influence of gravity and other forces. As the mass of the particles increase they form planetesimals, these planetesimals eventually merge to form planets.
The orbital radius is: 
Explanation:
The problem is asking to find the radius of the orbit of a satellite around a planet, given the orbital speed of the satellite.
For a satellite in orbit around a planet, the gravitational force provides the required centripetal force to keep it in circular motion, therefore we can write:

where
G is the gravitational constant
M is the mass of the planet
m is the mass of the satellite
r is the radius of the orbit
v is the speed of the satellite
Re-arranging the equation, we find:

Learn more about circular motion:
brainly.com/question/2562955
brainly.com/question/6372960
#LearnwithBrainly
Answer:
Explanation:
I will GUESS that we're supposed to be looking at a plot of a position in time.
IF that is the case.
THEN the answer would be Point B because it has the steepest slope.
Answer:
<em>Thus, the object is accelerating to the left</em>
Explanation:
<u>The Net Force</u>
The net force is the result of adding all the forces as vectors acting on a body.

Each vector can be expressed in its rectangular components Fx and Fy, and the sum is the sum of the rectangular components separately.
Second Newton's law gives the relation between the net force and the acceleration of the body:

We can see the acceleration is a vector with the same direction as the net force.
The diagram shows two vertical forces and two horizontal forces.
The vertical forces are acting in opposite directions and with the same magnitude, thus they cancel out, leaving zero net force in the y-axis.
The horizontal forces are opposite and with different magnitudes. Since the force acting to the left (F3) has a greater magnitude than the force acting to the right (F4), there is a net force directed to the left with a magnitude of 60 N - 20 N = 40 N
Thus, the object is accelerating to the left
Answer:
I'm not ASTRO physicist but an electro field is where I put my bets on
Explanation:
could be wrong