1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nexus9112 [7]
3 years ago
6

ASAP describe how energy is transferred in a mechanical wave

Physics
1 answer:
kirill115 [55]3 years ago
8 0
A mechanical wave<span> requires an initial </span>energy<span> input. Once this initial </span>energy<span> is added, the </span>wave<span> travels through the medium until all its </span>energy is transferred<span>. In contrast, electromagnetic </span>waves<span> require no medium, but can still travel through one</span>
You might be interested in
The luminous star Alnilam in the Orion belt is 1,340 light-years away from Earth. Use the conversion factor 1 parsec = 3.262 lig
svlad2 [7]

The answer is 410.8 pc.

8 0
4 years ago
Read 2 more answers
The mass of an object is 60kg on the surface of the earth what will be its weight on the surface of the moon
iris [78.8K]

Answer:

Wm = 97.2 [N]

Explanation:

We must make it clear that mass and weight are two different terms, the mass is always preserved that is to say this will never vary regardless of the location of the object. While weight is defined as the product of mass by gravitational acceleration.

W = m*g

where:

m = mass = 60 [kg]

g = gravity acceleration = 10 [m/s²]

But in order to calculate the weight of the body on the moon, we must know the gravitational acceleration of the moon. Performing a search of this value on the internet, we find that the moon's gravity is.

gm = 1.62 [m/s²]

Wm = 60*1.62

Wm = 97.2 [N]

8 0
3 years ago
What is domain theory? How does it explain how an electromagnet become magnetic
tresset_1 [31]
A magnet has two poles that is called north and sound the only information I can give
8 0
3 years ago
A space shuttle sits on the launch pad for 2.0 minutes, and then goes from rest to 4600 m/s in 8.0 minutes. Treat its motion as
SpyIntel [72]

Answer:

a.) a = 0 ms⁻²

b.) a = 9.58 ms⁻²

c.) a = 7.67 ms⁻²

Explanation:

a.)

    Acceleration (a) is defined as the time rate of change of velocity

                       a = \frac{v_{2} - v_{1} } {t}  

Given data

 Final velocity = v₂ = 0 m/s

 Initial velocity = v ₁ = 0 m/s

  As the space shuttle remain at rest for the first 2 minutes i.e there is no change in velocity so,

                 a = 0 ms⁻²

b.)

     Given data

As the space shuttle start from rest, So initial velocity is zero

    Initial velocity = v₁ = 0 ms⁻¹

    Final velocity  = v₂ = 4600 ms⁻¹

     Time = t = 8 min = 480 s

By the definition of Acceleration (a)

             a = \frac{v_{2} - v_{1} } {t}  

             a = \frac{4600 - 0 } {480}

                     a = 9.58 ms⁻²

c.)

    Given data

As the space shuttle is at rest for first 2 min then start moving, So initial velocity is zero

    Initial velocity = v₁ = 0 ms⁻¹

    Final velocity  = v₂ = 4600 ms⁻¹

     Time = t = 10 min = 600 s

By the definition of Acceleration (a)

             a = \frac{v_{2} - v_{1} } {t}  

             a = \frac{4600 - 0 } {600}

                     a = 7.67 ms⁻²

8 0
4 years ago
A sock stuck to the inside of the clothes dryer spins around the drum once every 2.0 s at a distance of 0.50 m from the center o
Rashid [163]

a) 1.57 m/s

The sock spins once every 2.0 seconds, so its period is

T = 2.0 s

Therefore, the angular velocity of the sock is

\omega=\frac{2\pi}{T}=\frac{2\pi}{2.0}=3.14 rad/s

The linear speed of the sock is given by

v=\omega r

where

\omega is the angular velocity

r = 0.50 m is the radius of the circular path of the sock

Substituting, we find:

v=(3.14)(0.50)=1.57 m/s

B) Faster

In this case, the drum is twice as wide, so the new radius of the circular path of the sock is twice the previous one:

r' = 2r = 1.00 m

At the same time, the drum spins at the same frequency as before, therefore the angular frequency as not changed:

\omega' = \omega = 3.14 rad/s

Therefore, the new linear speed would be:

v'=\omega' r' = \omega (2r)

And substituting,

v'=(3.14)(1.00)=3.14 rad/s = 2v

So, we see that the linear speed has doubled.

8 0
3 years ago
Other questions:
  • A train moving at a constant speed of 50.0 km/h moves east for 45.0 min, then in a direction 45.0° east of due north for 10.0 mi
    5·1 answer
  • Imagine that a brown horse and a white horse cross to produce offspring whose coat is made up of some brown hair and some white
    10·2 answers
  • Is the desert hot or cold?
    7·2 answers
  • Star x has twice the mass of the sun
    12·1 answer
  • The force behind electron movement is called <br>A. voltage B. current C. resistance D. ohm​
    11·1 answer
  • How to solve these two questions? ​
    11·1 answer
  • A women weighs 857 N. What is her mass?
    13·2 answers
  • A golf ball is hit horizontally off the edge of a 30 m high cliff and lands a distance of 25 m from the edge of the cliff. What
    13·1 answer
  • 2. Which state of matter—solid, liquid, or gas—is the best at conducting heat? Why?
    11·2 answers
  • A sprinter starts from rest and reaches a speed of 15 m/s in 4.25 s. Find his acceleration
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!