The gravitational force between two objects is given by:

where
G is the gravitational constant
m1 and m2 are the masses of the two objects
r is the separation between the two objects
The distance of the telescope from the Earth's center is

, the gravitational force is

and the mass of the Earth is

, therefore we can rearrange the previous equation to find m2, the mass of the telescope:
No, aluminum has a density near 2.7 g/cm^3
<span>7.8 g/cm^3 is near the density of iron (or in the case of a fork, steel).
this is it
</span>
Chattanooga - Chatype, London - Johnston, Berlin - BMF Change, Milan - Milano City, Eindhoven - Eindhoven, Stockholm - Stockholm Type, Minneapolis, and St. Paul - Twin.
-- pick a planet from the table
-- take it's mass and radius from the table, and plug them into the big ugly formula above the table
-- do the arithmetic with your pencil or your calculator. The answer is the acceleration of gravity on the planet you picked. Write it down so you don't lose it.
-- do the same for the other 3 planets in the table