Answer:
a) KE = 888.26J
b) N = 294.5 turns
Explanation:
For the kinetic energy:

The inertia is:

So, the kinetic energy will be:

Now, friction force is:
Ff = μ*N = 0.80*5N = 4N
The energy balance would be:
Kf - Ko = Wf where Kf=0; Ko = 888.26J; and Wf is the work done by friction force.
Wf = -Ff*d = -Ff*N*2*π*R where N is the amount of turns it gives.
Replacing these values into the energy balance:
0-888.26=-4*N*2*π*0.12
-888.26=-0.96*π*N
N=294.5 turns
Wavelength- <span>distance between successive crests of a wave.
frequency- t</span><span>he rate at which something occurs or is repeated over time.
amplitude-</span><span> maximum extent of a vibration.</span>
Answer:
P= 390 W
Explanation:
In physics, power is the rate of doing work or of transferring heat, i.e. the amount of energy transferred or converted per unit time. Work is a force F applied over a distance x. Matemathicaly it means
P = dW/dt ≈ d(F * x)/dt = xdF/dt + Fdx/dt. If force is constant dF/dt=0 so P=F dx/dt = P*v, where v is velocity, the rate of distance per unit time.
We have force and velocity. Newton is unit of Kg*m/s2, hence
P= 150 kgm/s2 * 2.6 m/s =390 Kgm2/s3 = 390 W, where W is Watts and is an unit of power
Given:
Horizontal distance between two boats = x = 14 m
One boat is at trough, the other is at crest.
As there is no crests between them meaning the boat are next to each other.
Wavelength is the distance between two consecutive crests/troughs = w
The distance between a crest and a trough next to it = w/2
Complete cycles = c = 5
Time taken for c cycles = t = 15 s
Vertical distance between two boats = y = 2.4 m
To find:
wavelength = w = 2x = 28 m
Amplitude = A = Displacement from mean to extreme position = y/2 = 1.2 m
Time period for one cycle = T = t/c = 15/5 = 3 s/cycle
frequency = 1/T = 1/3 = 0.33 hertz
speed = wavelength/Period = w/T = 28/3 = 9.33 m/s