Boiling point
i hope this helps.
Answer : The correct option is, (b) +0.799 V
Solution :
The values of standard reduction electrode potential of the cell are:
![E^0_{[H^{+}/H_2]}=+0.00V](https://tex.z-dn.net/?f=E%5E0_%7B%5BH%5E%7B%2B%7D%2FH_2%5D%7D%3D%2B0.00V)
![E^0_{[Ag^{+}/Ag]}=+0.799V](https://tex.z-dn.net/?f=E%5E0_%7B%5BAg%5E%7B%2B%7D%2FAg%5D%7D%3D%2B0.799V)
From the cell representation we conclude that, the hydrogen (H) undergoes oxidation by loss of electrons and thus act as anode. Silver (Ag) undergoes reduction by gain of electrons and thus act as cathode.
The half reaction will be:
Reaction at anode (oxidation) :
Reaction at cathode (reduction) :
The balanced cell reaction will be,

Now we have to calculate the standard electrode potential of the cell.

![E^o_{cell}=E^o_{[Ag^{+}/Ag]}-E^o_{[H^{+}/H_2]}](https://tex.z-dn.net/?f=E%5Eo_%7Bcell%7D%3DE%5Eo_%7B%5BAg%5E%7B%2B%7D%2FAg%5D%7D-E%5Eo_%7B%5BH%5E%7B%2B%7D%2FH_2%5D%7D)

Therefore, the standard cell potential will be +0.799 V
Gle's cache of http://www.middleschoolchemistry.com/lessonplans/chapter5/lesson4<span>. It is a snapshot of the page as it appeared on 21 Oct 2017 07:24:57 GMT.</span>
First shell from the nucleus can have a maximum of 2 electrons ! hope this helped
The original mass of krypton 81 that is present in the ice is 6.70 grams.
<h3>How do we calculate original mass?</h3>
Original mass of any substance will be calculated as below for the decomposition reaction is:
N = N₀(1/2)ⁿ, where
N = remaining mass of krypton-81 = 1.675g
N₀ = original mass of krypton-81 = ?
n will be calculated as:
n = T/t, where
T = total time period = 458,000 years
t = half life time = 229,000 years
n = 458,000/229,000 = 2
Now putting all these values on the above equation, we get
N₀ = 1.675 / (1/2)²
N₀ = 6.70 g
Hence required mass is 6.70 g.
To know more about half life time, visit the below link:
brainly.com/question/2320811