Answer:
d is the answer of this question
the process of changing one form of energy into another
The characteristics of the α and β particles allow to find the design of an experiment to measure the ²³⁴Th particles is:
-
On a screen, measure the emission as a function of distance and when the value reaches a constant, there is the beta particle emission from ²³⁴Th.
- The neutrons cannot be detected in this experiment because they have no electrical charge.
In Rutherford's experiment, the positive particles directed to the gold film were measured on a phosphorescent screen that with each arriving particle a luminous point is seen.
The particles in this experiment are α particles that have two positive charge and two no charged is a helium nucleus.
The test that can be carried out is to place a small ours of Thorium in front of a phosphorescent screen and see if it has flashes, with the amount of them we can determine the amount of particle emitted per unit of time.
Thorium has several isotopes, with different rates and types of emission:
- ²³²Th emits α particles, it is the most abundant 99.9%
- ²³⁴Th emits β particles, exists in small traces.
In this case they indicate that the material used is ²³⁴Th, which emits β particles that are electrons, the detection of these particles is more difficult since it has one negative charge, it has much lower mass, but they can travel further than the particles α, therefore, for what type of isotope we have, we can start measuring at a small distance and increase the distance until the reading is constant. At this point all the particles that arrive are β, which correspond to ²³⁴Th.
Neutron detection is much more difficult since these particles have no charge and therefore do not interact with electrons and no flashing on the screen is varied.
In conclusion with the characteristics of the α and β particles we can find the design of an experiment to measure the ²³⁴Th particles is:
-
On a screen, measure the emission as a function of distance and when the value reaches a constant, there is the β particle emission from ²³⁴Th.
- The neutrons cannot be detected in this experiment because they have no electrical charge.
Learn more about radioactive emission here: brainly.com/question/15176980
<h3>Answer:</h3>
Limiting reactant is Lithium
<h3>
Explanation:</h3>
<u>We are given;</u>
- Mass of Lithium as 1.50 g
- Mass of nitrogen is 1.50 g
We are required to determine the rate limiting reagent.
- First, we write the balanced equation for the reaction
6Li(s) + N₂(g) → 2Li₃N
From the equation, 6 moles of Lithium reacts with 1 mole of nitrogen.
- Second, we determine moles of Lithium and nitrogen given.
Moles = Mass ÷ Molar mass
Moles of Lithium
Molar mass of Li = 6.941 g/mol
Moles of Li = 1.50 g ÷ 6.941 g/mol
= 0.216 moles
Moles of nitrogen gas
Molar mass of Nitrogen gas is 28.0 g/mol
Moles of nitrogen gas = 1.50 g ÷ 28.0 g/mol
= 0.054 moles
- According to the equation, 6 moles of Lithium reacts with 1 mole of nitrogen.
- Therefore, 0.216 moles of lithium will require 0.036 moles (0.216 moles ÷6) of nitrogen gas.
- On the other hand, 0.054 moles of nitrogen, would require 0.324 moles of Lithium.
Thus, Lithium is the limiting reagent while nitrogen is in excess.
Explanation:
Mutations on DNA create genetic variation and diversity on which natural selection acts upon. Mutation can be advantageous, disadvantageous or neutral. Those mutations that confer advantage are preserved in the population while those that are DISadvantageous are weeded out. This occurs because advantageous traits that give a particular advantage to individuals in the environment, however slightest, give them an increased chance of survival and passing their genes to subsequent generations.
An example is mutation that causes sickle cell-shaped blood cells. Individuals with sickle cell blood are less likely to contract malaria. Therefore in an environment where malaria is endemic, the population will have a higher allele frequency for sickle cell alleles that populations in non-endemic areas.
Learn More:
For more on mutations check out;
brainly.com/question/11938701
brainly.com/question/13612138
#LearnWithBrainly