Answer: The density of 0.50 grams of gaseous carbon stored under 1.50 atm of pressure at a temperature of -20.0 °C is 0.867 g/L.
Explanation:
- d = m/V, where d is the density, m is the mass and V is the volume.
- We have the mass m = 0.50 g, so we must get the volume V.
- To get the volume of a gas, we apply the general gas law PV = nRT
P is the pressure in atm (P = 1.5 atm)
V is the volume in L (V = ??? L)
n is the number of moles in mole, n = m/Atomic mass, n = 0.50/12.0 = 0.416 mole.
R is the general gas constant (R = 0.082 L.atm/mol.K).
T is the temperature in K (T(K) = T(°C) + 273 = -20.0 + 273 = 253 K).
- Then, V = nRT/P = (0.416 mol)(0.082 L.atm/mol.K)(253 K) / (1.5 atm) = 0.576 L.
- Now, we can obtain the density; d = m/V = (0.50 g) / (0.576 L) = 0.867 g/L.
We are given with a compound, Zinc (Zn) having a 1.7 x 10
^23 atoms. We are tasked to solve for it's corresponding mass in g. We need to
find first the molecular weight of Zinc, that is
Zn= 65.38 g/mol
Not that 1 mol=6.022x10^{23} atoms, hence,
1.7 x 10 ^23 atoms x 1 mol/6.022x10^{23} atoms x65.38
g/ 1mol
=18.456 g of Zn
Therefore, the mass of Zinc 18.456 g
Answer:
1 mol of water is produced in those conditions.
Explanation:
The reaction to produce water between H₂ and O₂ is this:
2H₂ + O₂ → 2H₂O
We don't have the amount of hydrogen, so we have to think that is in excess.
Let's work with oxygen.
Ratio is 1:2
For 0.5 mole of oxygen, I will make the double of moles of water.
Answer:

Explanation:
Hello!
In this case, according to the chemical reaction by which HBr reacts with Ba(OH)2:

We can see there is a 2:1 mole ratio between the acid and the base; thus, at the equivalent point we can write:

Therefore, for is to compute the volume of the used base, we proceed as shown below:

And we plug in to obtain:

Best regards!