Solution :
Comparing the solubility of silver chromate for the solutions :
----- Less soluble than in pure water.
----- Less soluble than in pure water.
----- Similar solubility as in the pure water
----- Similar solubility as in the pure water
The silver chromate dissociates to form :

When 0.1 M of
is added, the equilibrium shifts towards the reverse direction due to the common ion effect of
, so the solubility of
decreases.
Both
and
are neutral mediums, so they do not affect the solubility.
Answer:
D. ionic bond
Explanation:
Due to electron deficiency in a metal cation, they cannot form a covalent bond beacuse it means to share electrons. By contrast metal cation seek for electrons. In an ionic bond, one atom give electrons, while another atom recevie electron. Because of that, this is the better option to metal cations.
Answer:
Groups 14, 15, and 16 have 2,3, and 4 electrons in the p sublevel (p sublevel has 3 "spaces" AKA orbitals), because Hunds says one in each orbital before doubling up if you had 2 electrons, group 14, they would both be in the first orbital, with 3 electrons, group 15, two in the first orbital one in the 2nd none in the 3rd. With 4 electrons, group 16, then you would have 2 in the first 2 orbitals and NONE in the 3rd.
Explanation:
If you are in group 13 you only have 1 electron so it can only be in one orbital. with group 17, you have 5 electrons, so 2 in the first 2 in the second and 1 in the 3rd, correct for Hunds rule anyway. Noble gasses, group 18, have 6 elecctrons, so every orbital is full any way you look at it.
To solve this problem, we must assume ideal gas behaviour so
that we can use Graham’s law:
vA / vB = sqrt (MW_B / MW_A)
where,
<span>vA = speed of diffusion of A (HBR)</span>
vB = speed of diffusion of B (unknown)
MW_B = molecular weight of B (unkown)
MW_A = molar weight of HBr = 80.91 amu
We know from the given that:
vA / vB = 1 / 1.49
So,
1/1.49 = sqrt (MW_B / 80.91)
MW_B = 36.44 g/mol
Since this unknown is also hydrogen halide, therefore this
must be in the form of HX.
HX = 36.44 g/mol , therefore:
x = 35.44 g/mol
From the Periodic Table, Chlorine (Cl) has a molar mass of
35.44 g/mol. Therefore the hydrogen halide is:
HCl
The kinetic energies of the particles (atoms, molecules, or ions) that make up a substance or object.