Answer:
option d) -9 J
Explanation:
Given:
Mass, m = 3.0 kg
time, t = 6.0 seconds
Velocity of mass, v = 2.0 m/s
height, h = 2 m
Now, using the concept of work-Energy theorem
we have
Net work done = change in kinetic energy
or
Work done by gravity + work done by the friction = Final kinetic energy - Initial kinetic energy
mgh +
= 
on substituting the values in the above equation, we get
3 × 9.8 × 2 +
= 
or
58.8 +
= 6
or
= -52.8 J
here negative sign depicts that the work is done against the motion of the mass
also,
Power = (Work done)/time
or
Power = -52.8/6 = -8.8 W ≈ 9 J
Hence, option d) -9 J is correct
The question is incomplete. The complete question is :
Two conducting spheres are mounted on insulating rods. They both carry some initial electric charge, and are far from any other charge. Their charges are measured. Then, the spheres are allowed to briefly touch, and the charge in one of them (sphere A) is measured again. These are the measured values:
a). Before contact:
Sphere A = 4.8 nC
Sphere B = 0 nC
What is the charge on sphere B after contact, in nC?
b). Before contact:
Sphere A = 2.9 nC
Sphere B = -4.4 nC
What is the charge on sphere B after contact, in nC?
Solution :
It is given that there are two spheres that are conducting and are mounted on an insulating rods which carry a initial charge and they are briefly touched and then one of the charge is measured.
Here the charge becomes divided when both the spheres are connected and then removed.
a). charge after they are charged


= 2.4 nC
b). The charge is


= -0.75 nC
Answer:
The frequency increases.
Explanation:
When the Musician draws the slide in the length of the horn gets shorter, which causes a decrease in the wavelength. A decrease in the wave length results in an increase in frequency.
Note:
The diameter of the horn has an effect on frequency, so a wider horn is effectively a long horn - open end correction ( distance between the the antinode and the open end of a pipe).
Frequency also depends on how hard the musician blows the trombone. The musician can change the frequency with the lip pressure being applied.
Special relativity led the path for general relativity; special relativity is in a sense a special application of the rules of general relativity. While general relativity is in position to tackle all of these problems, special relativity can tackle only problems in inertial frames. Inertial frame means that the frame of reference is inot accelerating. So, we disqualify answers A and D. However, remember that moving in a circle means that there is an acceleration, the centrifugal one, even if the speed does not change. Hence C is also incorrect.
The correct answer is B, since if there is no change in velocity, the frame does not accelerate and it is inertial.