<h2>Answer:</h2>
He is right that the energy of vaporization of 47 g of water s 106222 j.
<h3>Explanation:</h3>
Enthalpy of vaporization or heat of vaporization is the amount of energy which is used to transform one mole of liquid into gas.
In case of water it is 40.65 KJ/mol. And 18 g of water is equal to one mole.
It means for vaporizing 18 g, 40.65 kJ energy is needed.
So for energy 47 g of water = 47/18 * 40.65 = 106.1 KJ
Hence the student is right about the energy of vaporization of 47 g of water.
Answer:
Explanation:
The air 9% mole% methane have an average molecular weight of:
9%×16,04g/mol + 91%×29g/mol = 27,8g/mol
And a flow of 700000g/h÷27,8g/mol = 25180 mol/h
In the reactor where methane solution and air are mixed:
In = Out
Air balance:
91% air×25180 mol/h + 100% air×X = 95%air×(X+25180)
Where X is the flow rate of air in mol/h = <em>20144 mol air/h</em>
<em></em>
The air in the product gas is
95%×(20144 + 25180) mol/h = 43058 mol air× 21%O₂ = 9042 mol O₂ ×32g/mol = <em>289 kg O₂</em>
43058 mol air×29g/mol <em>1249 kg air</em>
Percent of oxygen is:
=<em>0,231 kg O₂/ kg air</em>
<em></em>
I hope it helps!
Answer:
6.2 g
Explanation:
In a first-order decay, the formula for the amount remaining after <em>n</em> half-lives is
where
<em>N</em>₀ and <em>N</em> are the initial and final amounts of the substance
1. Calculate the <em>number of half-lives</em>.
If
2. Calculate the <em>final mass</em> of the substance.
Answer:
im not sure but I hope this helps
Explanation:
I believe the equivalents is just the moles reactant/moles limiting reactant
water has a denisty of 1 g/mL. 1 L is 1000 ml so there are 1000g/L.
the molar mass of water is 18g/mol if you use the Liters in the equation above you can find the number of grams present. divide this number you found by 18 to find the moles.
now take the amount of the other reactant given and divide it by its own molar mass. this will give you the number of moles of that reactant.
divide the moles of water by the moles of the reactant and that is the equivalent.
to find the normality you take this number and divide it by the number of liters.
I think I have done a question like this before and i'm pretty sure your answer would be the 2nd one 1s22s22p4. I'm not 100% sure but try it at least.