Answer: 
Explanation:
The Compton Shift
in wavelength when the photons are scattered is given by the following equation:
(1)
Where:
is a constant whose value is given by
, being
the Planck constant,
the mass of the electron and
the speed of light in vacuum.
the angle between incident phhoton and the scatered photon.
We are told the maximum Compton shift in wavelength occurs when a photon isscattered through
:
(2)
(3)
Now, let's find the angle that will produce a fourth of this maximum value found in (3):
(4)
(5)
If we want
,
must be equal to 1:
(6)
Finding
:
Finally:
This is the scattering angle that will produce
Answer: Option (d) is correct.
Explanation:
Given, 1,152 British thermal units
1 British thermal unit = 1055.06 joules
So, in 1,152 British thermal units there will be :

Hence, from the given options the closest answer is of option (d). So, option (d) is correct.
Answer:

Explanation:
As we know that Far sighted person has near point shifted to 80 cm distance
so he is able to see the object 80 cm
now the distance of lens from eye is 2 cm
and the person want to see the objects at distance 10 cm
so here the image distance from lens is 80 cm and the object distance from lens is 8 cm
now from lens formula we have



Answer:
R=3818Km
Explanation:
Take a look at the picture. Point A is when you start the stopwatch. Then you stand, the planet rotates an angle α and you are standing at point B.
Since you travel 2π radians in 24H, the angle can be calculated as:
t being expressed in hours.

From the triangle formed by A,B and the center of the planet, we know that:
Solving for r, we get:
