Answer:
faster; more kinetic energy
Explanation:
Answer:
a much larger slit, the phenomenon of Sound diffraction that slits for light.
this is a series of equally spaced lines giving a diffraction envelope
Explanation:
The diffraction phenomenon is described by the expression
d sin θ = m λ
Where d is the distance of the slit, m the order of diffraction that is an integer and λ the wavelength.
For train the diffraction phenomenon, the d / Lam ratio is decisive if this relation of the gap separation in much greater than the wavelength does not reduce the diffraction phenomenon but the phenomena of geometric optics.
The wavelength range for visible light is 4 10⁻⁷ m to 7 10⁻⁷ m. The wavelength range for sound is 17 m to 1.7 10⁻² m. Therefore, with a much larger slit, the phenomenon of Sound diffraction that slits for light.
When we add a second slit we have the diffraction of each one separated by the distance between them, when the integrals are made we arrive at the result of the interference phenomenon, a this is a series of equally spaced lines giving a diffraction envelope
When I separate the distance between the two slits a lot, the time comes when we see two individual diffraction patterns
Answer:
a. the work done by the gravitational force on Block A is <u>less than</u> the work done by the gravitational force on Block B.
b. the speed of Block A is <u>equal to</u> the speed of Block B.
c. the momentum of Block A is <u>less than</u> the momentum of Block B.
Explanation:
a. The work done by the gravitational force is equal to:
w = m*g*h
where m is mass, g is the standard gravitational acceleration and h is height. Given that both blocks are released from rest at the same height, then, the bigger the mass, the bigger the work done.
b. With ramps frictionless, the final speed of the blocs is:
v = √(2*g*h)
which is independent of the mass of the blocks.
c. The momentum is calculated as follows:
momentum = m*v
Given that both bocks has the same speed, then, the bigger the mass, the bigger the momentum.
Answer:
The correct answer is option B.
Explanation:

f = focal length
P = -5.5 D (negative power means that lens is concave)

1 m = 100 cm
f = -0.1818 m = -0.1818 × 100 cm= -18.18 cm



v = -18.18 cm
v = 1.8 cm - far point
far point = 1.8 cm - v =1.8 cm - (-18.18 cm) = 19.98 cm
But closest answer from the given options is option B.Hence, 20 cm is the correct answer.