Correct order, from lowest potential energy to highest potential energy:
E - C - D - B - A
Explanation:
The gravitational potential energy of the car is given by:

where
m is the car's mass
g is the gravitational acceleration
h is the height of the car relative to the ground
In the formula, we see that m and g are constant, so the potential energy of the car depends only on its height above the ground, h. The higher the car from the ground, the larger its potential energy. Therefore, the position with least potential energy will be E, since the height is the minimum. Then, C will have more potential energy, because the car is at higher position, and so on: the position with greatest potential energy is A, because the height of the car is maximum.
Answer:
positive
Explanation:
The ball is rolling down with a negative velocity, but the velocity is slowing down. therefore the velocity must increase in order for the ball to slow down.
For example let the ball's initial velocity be -15 m/s. and it is slowing down to let's say -13 m/s. Well this means that it's velocity has increase by 2 m/s. So, its acceleration is positive.
Answer:
The downwind side of an obstacle such as a ridge. The addition of weight on top of a snowpack, usually from precipitation, wind drifting, or a person. An avalanche that releases from a point and spreads downhill collecting more snow - different from a slab avalanche. Also called a point-release or sluff.
Explanation:
Answer: The Sun measures 1.4 million km across, while the Moon is a mere 3,474 km across. In other words, the Sun is roughly 400 times larger than the Moon. But the Sun also happens to be 400 times further away than the Moon, and this has created an amazing coincidence.
Explanation:
Elastic Potential Energy because the elasticity in the string stores up the energy.