How many joules of energy are required to run a 100 W light bulb for one day?
<span><span><span>A</span><span>100 </span>joules</span><span><span>B</span>100<span>W </span><span>× </span>24<span>hr </span>joules</span><span><span>C</span>100<span>W </span><span>× </span>24<span>hr </span><span>× </span>60<span>min∕hr </span>joules</span><span><span>D</span>100<span>W </span><span>× </span>24<span>hr </span><span>× </span>60<span>min∕hr </span><span>× </span>60<span>s∕min </span>joules</span></span>
Answer:
1 Newton
Explanation:
F=9*10^9*q0q1/r^2]]
F=9*10^9*(q0q1)/ r^2
r=3cm
F=4N
F=9*10^9*(q0q1)/3^2
4=9*10^9*(q0q1)/9
4=10^9 q0q1
q0q1=4/10^9
q0q1=4*10^-9
To calculate the force between the forces at a distance of 6 cm
F=9*10^9*(q0q1)/ r^2
=9*10^9*(4*10^-9)/6^2
=9*10^9*(4*10^-9)/36
=10^9*4*10^-9/4
=10^9*10^-9
=1 Newton
If we assume that the acceleration is constant, we can use on the kinematic equations:
Vf = Vi + a*t = 15 + 3*4 = 27 m/s
REALISM shows things as they REALLY look.
Answer:
Campfires top the list of ways that humans start wildfires, the U.S. Forest Service said. Typically, campfires either grow out of control and the people who built the fire do not have a way to stop it, or they fail to extinguish the fire properly, allowing the fire to re-ignite after they leave.
Explanation: