Answer:
5.41 x 10²² g
Explanation:
Data Given:
no. of moles of sodium = 2.35 x 10²¹ moles
mass of sodium = ?
Solution:
Formula used
no. of moles = mass in grams / molar mass
To find mass rearrange the above equation:
mass in grams = no. of moles x molar mass. . . . . . (1)
- molar mass of Sodium (Na) = 23 g/mol
Put values in equation 1
mass in grams = 2.35 x 10²¹ moles x 23 g/mol
mass in grams = 5.41 x 10²² g
So,
mass of Sodium (Na) = 5.41 x 10²² g
Answer:
nor its just
Explanation:
9 i need answer to be longer so im typing this out
Answer:
it would have caused organisms to move in search of food and better conditions.
Answer:
a) IUPAC Names:
1) (<em>trans</em>)-but-2-ene
2) (<em>cis</em>)-but-2-ene
3) but-1-ene
b) Balance Equation:
C₄H₁₀O + H₃PO₄ → C₄H₈ + H₂O + H₃PO₄
As H₃PO₄ is catalyst and remains unchanged so we can also write as,
C₄H₁₀O → C₄H₈ + H₂O
c) Rule:
When more than one alkene products are possible then the one thermodynamically stable is favored. Thermodynamically more substituted alkenes are stable. Furthermore, trans alkenes are more stable than cis alkenes. Hence, in our case the major product is trans alkene followed by cis. The minor alkene is the 1-butene as it is less substituted.
d) C is not Geometrical Isomer:
For any alkene to demonstrate geometrical isomerism it is important that there must be two different geminal substituents attached to both carbon atoms. In 1-butene one carbon has same geminal substituents (i.e H atoms). Hence, it can not give geometrical isomers.