Answer: B
Explanation: The clouds act almost like a lid. Think of it like when you put tin foil over food before it goes in the oven. so that even after it is removed from the heat the tin foil traps it causing it to stay warm.
Answer: 1.00×10^26=1000×10^23
1000×10^23/6.022×10^23=166.05×10^23 moles of water.
HOPE IT HELPS ☺️
PLEASE MARK AS BRAINLIEST
Explanation:
The pH of the solution is 2.54.
Explanation:
pH is the measure of acidity of the solution and Ka is the dissociation constant. Dissociation constant is the measure of concentration of hydrogen ion donated to the solution.
The solution of C₆H₂O₆ will get dissociated as C₆HO₆ and H+ ions. So the molar concentration of 0.1 M is present at the initial stage. Lets consider that the concentration of hydrogen ion released as x and the same amount of the base ion will also be released.
So the dissociation constant Kₐ can be written as the ratio of concentration of products to the concentration of reactants. As the concentration of reactants is given as 0.1 M and the concentration of products is considered as x for both hydrogen and base ion. Then the
![K_{a}=\frac{[H^{+}][HB] }{[reactant]}](https://tex.z-dn.net/?f=K_%7Ba%7D%3D%5Cfrac%7B%5BH%5E%7B%2B%7D%5D%5BHB%5D%20%7D%7B%5Breactant%5D%7D)
[HB] is the concentration of base.


Then
![pH = - log [x] = - log [ 0.283 * 10^{-2}]\\ \\pH = 2 + 0.548 = 2.54](https://tex.z-dn.net/?f=pH%20%3D%20-%20log%20%5Bx%5D%20%3D%20-%20log%20%5B%200.283%20%2A%2010%5E%7B-2%7D%5D%5C%5C%20%5C%5CpH%20%3D%202%20%2B%200.548%20%3D%202.54)
So the pH of the solution is 2.54.
Answer:
The pOH of HNO₃ solution that ha OH⁻ concentration 9.50 ×10⁻⁹M is 8.
Explanation:
Given data:
[OH⁻] = 9.50 ×10⁻⁹M
pOH = ?
Solution:
pOH = -log[OH⁻]
Now we will put the value of OH⁻ concentration.
pOH = -log[9.50 ×10⁻⁹M]
pOH = 8
Thus the pOH of HNO₃ solution that ha OH⁻ concentration 9.50 ×10⁻⁹M is 8.
<u>Answer:</u> The correct answer is Option D.
<u>Explanation:</u>
To calculate the hybridization of
, we use the equation:
![\text{Number of electron pair}=\frac{1}{2}[V+N-C+A]](https://tex.z-dn.net/?f=%5Ctext%7BNumber%20of%20electron%20pair%7D%3D%5Cfrac%7B1%7D%7B2%7D%5BV%2BN-C%2BA%5D)
where,
V = number of valence electrons present in central atom (S) = 6
N = number of monovalent atoms bonded to central atom = 0
C = charge of cation = 0
A = charge of anion = 0
Putting values in above equation, we get:
![\text{Number of electron pair}=\frac{1}{2}[6]=3](https://tex.z-dn.net/?f=%5Ctext%7BNumber%20of%20electron%20pair%7D%3D%5Cfrac%7B1%7D%7B2%7D%5B6%5D%3D3)
The number of electron pair around the central metal atom are 3. This means that the hybridization will be
and the electronic geometry of the molecule will be trigonal planar.
Hence, the correct answer is Option D.