<span>(C) in the nucleus with neutrons
</span>
Answer:
2.09 atm
Explanation:
We can solve this problem by using the equation of state for an ideal gas, which relates the pressure, the volume and the temperature of an ideal gas:

where
p is the pressure of the gas
V is its volume
n is the number of moles
R is the gas constant
T is the absolute temperature
In this problem we have:
n = 0.65 mol is the number of moles of the gas
V = 8.0 L is the final volume of the gas
is the temperature of the gas
is the gas constant
Solving for p, we find the final pressure of the gas:

When the magma cools slowly. You find a deposit of organic limestone.
Answer:
a) 0.525 mol
b) 0.525 mol
c) 0.236 mol
Explanation:
The combustion reactions (partial and total) will be:
C₇H₁₆ + (15/2)O₂ → 7CO + 8H₂O
C₇H₁₆ + 11O₂ → 7CO₂ + 8H₂O
---------------------------------------------------
2C₇H₁₆ + (37/2)O₂ → 7CO + 7CO₂ + 16H₂O
It means that the reaction will form 50% of each gas.
a) 0.525 mol of CO
b) 0.525 mol of CO₂
c) The molar mass of heptane is: 7*12 g/mol of C + 16*1 g/mol of H = 100 g/mol
So, the number of moles is the mass divided by the molar mass:
n = 11.5/100 = 0.115 mol
For the stoichiometry:
2 mol of C₇H₁₆ -------------- (37/2) mol of O₂
0.115 mol of C₇H₁₆ --------- x
By a simple direct three rule:
2x = 2.1275
x = 1.064 mol of O₂
Which is the moles of oxygen that reacts, so are leftover:
1.3 - 1.064 = 0.236 mol of O₂