<em>Kinetic molecular Theory points:</em>
1. Gases molecules are always in random motion.
2. Gases molecule collide with each other and with the walls of container.
3. Gases molecules total volume is negligible as compare to container.
4. There is no attractive forces between the gases particles
5. K.E is directly proportional to absolute temperature.
<em>Why liquid are denser than gases according to K.M.T:</em>
1. As gases are in random motion, so they have weak forces/ no attractive forces (Acc. to KMT) due to this they are apart as compare to liquid which have stronger forces are closer to each other. So volume of gases will be greater. d= m/v
2. K. E of gases are greater than liquid due to this gases move randomly, apart from each another. Due to this their volume will be greater. d= m/v
3. Gases molecules total volume is negligible as compare to container which show that gases molecules have large spaces between them which causes lower in density.
Answer:

Explanation:
The HF is about five million times as strong as phenol, so it will be by far the major contributor of hydronium ions. We can ignore the contribution from the phenol.
1 .Calculate the hydronium ion concentration
We can use an ICE table to organize the calculations.
HF + H₂O ⇌ H₃O⁺ + F⁻
I/mol·L⁻¹: 2.7 0 0
C/mol·L⁻¹: -x +x +x
E/mol·L⁻¹: 2.7 - x x x
![K_{\text{a}} = \dfrac{\text{[H}_{3}\text{O}^{+}] \text{F}^{-}]} {\text{[HF]}} = 7.2 \times 10^{-4}\\\\\dfrac{x^{2}}{2.7 - x} = 7.2 \times 10^{-4}\\\\\text{Check for negligibility of }x\\\\\dfrac{2.7}{7.2 \times 10^{-4}} = 4000 > 400\\\\\therefore x \ll 2.7\\\dfrac{x^{2}}{2.7} = 7.2 \times 10^{-4}\\\\x^{2} = 2.7 \times 7.2 \times 10^{-4} = 1.94 \times 10^{-3}\\x = 0.0441\\\text{[H$_{3}$O$^{+}$]}= \text{x mol$\cdot$L$^{-1}$} = \text{0.0441 mol$\cdot$L$^{-1}$}](https://tex.z-dn.net/?f=K_%7B%5Ctext%7Ba%7D%7D%20%3D%20%5Cdfrac%7B%5Ctext%7B%5BH%7D_%7B3%7D%5Ctext%7BO%7D%5E%7B%2B%7D%5D%20%5Ctext%7BF%7D%5E%7B-%7D%5D%7D%20%7B%5Ctext%7B%5BHF%5D%7D%7D%20%3D%207.2%20%5Ctimes%2010%5E%7B-4%7D%5C%5C%5C%5C%5Cdfrac%7Bx%5E%7B2%7D%7D%7B2.7%20-%20x%7D%20%3D%207.2%20%5Ctimes%2010%5E%7B-4%7D%5C%5C%5C%5C%5Ctext%7BCheck%20for%20negligibility%20of%20%7Dx%5C%5C%5C%5C%5Cdfrac%7B2.7%7D%7B7.2%20%5Ctimes%2010%5E%7B-4%7D%7D%20%3D%204000%20%3E%20400%5C%5C%5C%5C%5Ctherefore%20x%20%5Cll%202.7%5C%5C%5Cdfrac%7Bx%5E%7B2%7D%7D%7B2.7%7D%20%3D%207.2%20%5Ctimes%2010%5E%7B-4%7D%5C%5C%5C%5Cx%5E%7B2%7D%20%3D%202.7%20%5Ctimes%207.2%20%5Ctimes%2010%5E%7B-4%7D%20%3D%201.94%20%5Ctimes%2010%5E%7B-3%7D%5C%5Cx%20%3D%200.0441%5C%5C%5Ctext%7B%5BH%24_%7B3%7D%24O%24%5E%7B%2B%7D%24%5D%7D%3D%20%5Ctext%7Bx%20mol%24%5Ccdot%24L%24%5E%7B-1%7D%24%7D%20%3D%20%5Ctext%7B0.0441%20mol%24%5Ccdot%24L%24%5E%7B-1%7D%24%7D)
2. Calculate the pH
![\text{pH} = -\log{\rm[H_{3}O^{+}]} = -\log{0.0441} = \large \boxed{\mathbf{1.36}}](https://tex.z-dn.net/?f=%5Ctext%7BpH%7D%20%3D%20-%5Clog%7B%5Crm%5BH_%7B3%7DO%5E%7B%2B%7D%5D%7D%20%3D%20-%5Clog%7B0.0441%7D%20%3D%20%5Clarge%20%5Cboxed%7B%5Cmathbf%7B1.36%7D%7D)
3. Calculate [C₆H₅O⁻]
C₆H₅OH + H₂O ⇌ C₆H₅O⁻ + H₃O⁺
2.7 x 0.0441

-20.16 KJ of heat are released by the reaction of 25.0 g of Na2O2.
Explanation:
Given:
mass of Na2O2 = 25 grams
atomic mass of Na2O2 = 78 gram/mole
number of mole = 
= 
=0. 32 moles
The balanced equation for the reaction:
2 Na2O2(s) + 2 H2O(l) → 4 NaOH(aq) + O2(g) ∆Hο = −126 kJ
It can be seen that 126 KJ of energy is released when 2 moles of Na2O2 undergoes reaction.
similarly 0.3 moles of Na2O2 on reaction would give:
= 
x = 
= -20.16 KJ
Thus, - 20.16 KJ of energy will be released.
Answer:
Cobaltous Nitride,I think so anyway.......