Examples of such quantities include distance, displacement, speed, velocity, acceleration, force, mass, momentum, energy, work, power, etc. All these quantities can by divided into two categories - vectors and scalars. A vector quantity is a quantity that is fully described by both magnitude and direction.
but tpla ybut tpla y but tpl but tpla y but tpla y but tpla ya y but tpla y but tpla y
Explanation:
First of all we calculate the volume which is 20m×10m×8m= 1600m^3 and then multiply the density by the volume to get the mass which will equal to 99200kg therefore the weight will be
<em><u>Weight</u></em>
mass × acceleration due to gravity
=99200kg × 10m^s^2
=992000N
Answer:
W = (F1 - mg sin θ) L, W = -μ mg cos θ L
Explanation:
Let's use Newton's second law to find the friction force. In these problems the x axis is taken parallel to the plane and the y axis perpendicular to the plane
Y Axis
N -
=
N = W_{y}
X axis
F1 - fr - Wₓ = 0
fr = F1 - Wₓ
Let's use trigonometry to find the components of the weight
sin θ = Wₓ / W
cos θ = W_{y} / W
Wₓ = W sin θ
W_{y} = W cos θ
We substitute
fr = F1 - W sin θ
Work is defined by
W = F .dx
W = F dx cos θ
The friction force is parallel to the plane in the negative direction and the displacement is positive along the plane, so the Angle is 180º and the cos θ= -1
W = -fr x
W = (F1 - mg sin θ) L
Another way to calculate is
fr = μ N
fr = μ W cos θ
the work is
W = -μ mg cos θ L