Answer:
THE SPECIFIC HEAT OF THE ALLOY IS 0.9765 J/g K
Explanation:
Mass of alloy = 33 g
Initial temperature of alloy = 93°C
Mass of water = 50 g
Initail temp. of water = 22 °C
Heat capacity of calorimeter = 9.20 J/K
Final temp. = 31.10 °C
specific heat of alloy = unknown
specific heat capacity of water = 4.2 J/g K
Heat = mass * specific heat * change in temperature = m c ΔT
Heat = heat capcity * chage in temperature = Δ H * ΔT
In calorimetry;
Heat lost by the alloy = Heat gained by water + Heat of the calorimeter
mc ΔT = mcΔT + Heat capacity * ΔT
33 * C * ( 93 - 31.10) = 50 * 4.2 * ( 31.10 -22) + 9.20 * ( 31.10 -22)
33 * C * 61.9 = 50 * 4.2 * 9.1 + 9.20 * 9.1
2042.7 C = 1911 + 83,72
C = 1911 + 83.72 / 2042.7
C = 1994.72 /2042.7
C =0.9765 J/g K
The specific heat of the alloy is 0.9765 J/ g K
Answer:
Mass and gravitational for e is not relart
Answer: The answer is the second choice.
Explanation:
Answer:
To determine the enthalpy and entropy of dissolving a compound, you need to measure the Ksp at multiple temperatures. Then, plot ln(Ksp) vs. 1/T. The slope of the plotted line relates to the enthalpy (ΔH) of dissolving and the intercept of the plotted line relates to the entropy (ΔS) of dissolving.
Explanation:
Hello there!
In this case, according to the given information, it turns out possible for us use the thermodynamic definition of the Gibbs free energy and its relationship with Ksp as follows:

Thus, by combining them, we obtain:

Which is related to the general line equation:

Whereas:

It means that we answer to the blanks as follows:
To determine the enthalpy and entropy of dissolving a compound, you need to measure the Ksp at multiple temperatures. Then, plot ln(Ksp) vs. 1/T. The slope of the plotted line relates to the enthalpy (ΔH) of dissolving and the intercept of the plotted line relates to the entropy (ΔS) of dissolving.
Regards!