I believe the answer is: in order not to write very big or very small number values
Answer:
C. The first ionization energy decreases because the outermost
electron is farther from the nucleus.
Explanation:
Ionization energy trend along group:
As we move down the group atomic radii increased with increase of atomic number. The addition of electron in next level cause the atomic radii to increased. The hold of nucleus on valance shell become weaker because of shielding of electrons thus size of atom increased.
As the size of atom increases the ionization energy from top to bottom also decreases because it becomes easier to remove the electron because of less nuclear attraction and as more electrons are added the outer electrons becomes more shielded and away from nucleus.
Ionization energy trend along period:
As we move from left to right across the periodic table the number of valance electrons in an atom increase. The atomic size tend to decrease in same period of periodic table because the electrons are added with in the same shell. When the electron are added, at the same time protons are also added in the nucleus. The positive charge is going to increase and this charge is greater in effect than the charge of electrons. This effect lead to the greater nuclear attraction. The electrons are pull towards the nucleus and valance shell get closer to the nucleus. As a result of this greater nuclear attraction atomic radius decreases and ionization energy increases because it is very difficult to remove the electron from atom and more energy is required.
Answer:
16 g/mol
Explanation:
In CO2, it means we have 1 mole of carbon and 2 moles of oxygen.
However, we want to find the molar mass of just a single mole of oxygen.
Now, from tables of values of elements in electronic configuration, the molar mass of oxygen is usually approximately 16 g/mol.
In essence the molar mass is simply the atomic mass in g/mol
Answer:
5.6 seconds
Explanation:
The reaction follows a zero-order in dinitrogen monoxide
Rate = k[N20]^0 = change in concentration/time
[N20]^0 = 1
Time = change in concentration of N2O/k
Initial number of moles of N2O = 300 mmol = 300/1000 = 0.3 mol
Initial concentration = moles/volume = 0.3/4 = 0.075
Number of moles after t seconds = 150 mmol = 150/1000 = 0.15 mol
Concentration after t seconds = 0.15/4 = 0.0375 M
Change in concentration of N2O = 0.075 - 0.0375 = 0.0375 M
k = 0.0067 M/s
Time = 0.0375/0.0067 = 5.6 s