As stated in the statement, we will apply energy conservation to solve this problem.
From this concept we know that the kinetic energy gained is equivalent to the potential energy lost and vice versa. Mathematically said equilibrium can be expressed as


Where,
m = mass
= initial and final velocity
g = Gravity
h = height
As the mass is tHe same and the final height is zero we have that the expression is now:






Answer:
Neither.
Explanation:
When an electron is released from rest, in an uniform electric field, it will accelerate moving in a direction opposite to the field (as the field has the direction that it would take a positive test charge, and the electron carries a negative charge).
It will move towards a point with a higher potential, so its kinetic energy will increase, while its potential energy will decrease:
⇒ ΔK + ΔU = 0 ⇒ ΔK = -ΔU = - (-e*ΔV)
As ΔV>0, we conclude that the electric potential energy decreases while the kinetic energy increases in the same proportion, in order to energy be conserved, in absence of non-conservative forces.
Less because now there is less force on the scale and you are unbalanced. Therefore the scale will have a lower number then before.
A single fixed pulley can be used to raise or lower lightweight objects.
Option b
<u>Explanation:</u>
A pulley is a simple machine tool which is used to make lifting or lowering tasks easy. A single fixed pulley is a system involving only one pulley fixed on a constant rigid support with a rope wrapped around the wheel. Such a system can be used only to change the direction of applied force in raising or lowering small, lightweight objects which need minimal work force.
A single fixed pulley system helps only in redirecting the applied force direction by using a rope and wheel assembly. The work done in such a case remains the same and hence it is not preferred to use it in lifting heavy objects. Neither is the required force reduced in case of a single fixed pulley system. A movable pulley helps in achieving (A) and (C).