Answer:
Height.
Explanation:
Potential energy can be defined as an energy possessed by an object or body due to its position.
Mathematically, potential energy is given by the formula;

Where,
P.E represents potential energy measured in Joules.
m represents the mass of an object.
g represents acceleration due to gravity measured in meters per seconds square.
h represents the height measured in meters.
Hence, the property of the object (having a mass of 5 kilograms) which must differ to have different gravitational potential energies is the height from which they are falling from.
The object having the higher height would have a greater gravitational potential energy than the lower object.
Answer:
3.95979 m/s
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration

Here 


Initial velocity of the puck should be 3.95979 m/s
Answer:
853776 J
Explanation:
The work-energy needs to pump water out of the pool is the product of the weight of water and distance h
E = Wh = mgh
Since water mass is a body of water we can treat it as the product of density 1000kg/m3 and volume, which is the product of base area and uniform height h

Therefore:
![E = mgh = g\rho A\int\limits^{2.2}_0 {h} \, dh\\E = 9.8*1000*30*12[h^2/2]^{2.2}_0 = 1764000(2.2^2 - 0^2) = 853776 J](https://tex.z-dn.net/?f=E%20%3D%20mgh%20%3D%20g%5Crho%20A%5Cint%5Climits%5E%7B2.2%7D_0%20%7Bh%7D%20%5C%2C%20dh%5C%5CE%20%3D%209.8%2A1000%2A30%2A12%5Bh%5E2%2F2%5D%5E%7B2.2%7D_0%20%3D%201764000%282.2%5E2%20-%200%5E2%29%20%3D%20853776%20J)
The formula to use is the one that connects the acceleration,
the distance fallen, and the time spent falling:
Distance = 1/2 a T² .
You said 2.1 meters in 0.6 second .
2.1 m = 1/2 a (0.6 sec)²
Multiply each side by 2 : 4.2 m = a (0.6 sec)²
Divide each side by (0.6 sec)² = (4.2/0.36) m/s² = a
a = (11 and 2/3) m/s²
(about 19% more than Earth's gravity)
Answer:
c
Explanation:
................................................